1
|
Shi X, Deng P, Rajeshkumar T, Maron L, Cheng J. Multi-electron redox reactivity of a samarium(ii) hydrido complex. Chem Sci 2024; 15:11965-11971. [PMID: 39092133 PMCID: PMC11290423 DOI: 10.1039/d4sc03104k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Well-defined low-valent molecular rare-earth metal hydrides are rare, and limited to Yb2+ and Eu2+ centers. Here, we report the first example of the divalent samarium(ii) hydrido complex [(CpAr5)SmII(μ-H)(DABCO)]2 (4) (CpAr5 = C5Ar5, Ar = 3,5-iPr2-C6H3; DABCO = 1,4-diazabicyclooctane) supported by a super-bulky penta-arylcyclopentadienyl ligand, resulting from the hydrogenolysis of the samarium(ii) alkyl complex [(CpAr5)SmII{CH(SiMe3)2}(DABCO)] (3). Complex 4 exhibits multi-electron redox reactivity toward a variety of substrates. Exposure of complex 4 to CO2 results in the formation of the trivalent samarium(iii) mixed-bis-formate/carbonate complex [(CpAr5)SmIII(μ-η2:η1-O2CH)(μ-η2:η2-CO3)(μ-η1:η1-O2CH)SmIII(CpAr5)(DABCO)] (8), mediated by hydride insertion and reductive disproportionation reactions. Complex 4 shows four-electron reduction toward four equivalents of CS2 to afford the trivalent samarium(iii) bis-trithiocarbonate complex [(CpAr5)SmIII(μ-η2:η2-CS3)(DABCO)]2 (9). A mechanistic study of the formation of complex 8 was carried out using DFT calculations.
Collapse
Affiliation(s)
- Xianghui Shi
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street Changchun 130022 China
| | - Peng Deng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street Changchun 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, UPS, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Laurent Maron
- LPCNO, CNRS & INSA, UPS, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Jianhua Cheng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street Changchun 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
2
|
Chowdhury T, Wilson C, Farnaby JH. Activation and functionalisation of carbon dioxide by bis-tris(pyrazolyl)borate-supported divalent samarium and trivalent lanthanide silylamide complexes. Dalton Trans 2024; 53:11884-11894. [PMID: 38953525 DOI: 10.1039/d4dt01382d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Synthesis and reactivity with carbon dioxide (CO2) of divalent samarium in the bis-tris(pyrazolyl)borate ligand environment has been reported. In addition, CO2 activation and functionalisation by lanthanide silylamides in the bis-tris(pyrazolyl)borate ligand environment was demonstrated. Reduction of the Sm(III) precursor [Sm(Tp)2(OTf)] (Tp = hydrotris(1-pyrazolyl)borate; OTf = triflate) with KC8 yielded the insoluble Sm(II) multi-metallic coordination polymer [{Sm(Tp)2}n] 1-Sm. Addition of 1,2-dimethoxyethane (DME) to 1-Sm enabled isolation of the monomeric complex [Sm(Tp)2(DME)] 1-Sm(DME). Complex 1-Sm(DME) reduced CO2 to yield the oxalate-bridged dimeric Sm(III) complex [{Sm(Tp)2}2(μ-η2:η2-O2CCO2)] 2-Sm. The reactions of heteroleptic Ln(III) silylamide complexes [Ln(Tp)2(N'')] (Ln = Y, Sm; N'' = N(SiMe3)2) with CO2 yielded monomeric Ln(III) silyloxides [Ln(Tp)2(OSiMe3)] 3-Ln and trimethylsilyl isocyanate (OCNSiMe3). Complexes 3-Ln are the first crystallographically characterised examples of Ln(III)-OSiMe3 bonds accessed via CO2 activation and functionalisation. Full characterisation data are presented for all complexes, including solid-state molecular structure determination by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Tajrian Chowdhury
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Joy H Farnaby
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
3
|
Pérez-Jiménez M, Corona H, de la Cruz-Martínez F, Campos J. Donor-Acceptor Activation of Carbon Dioxide. Chemistry 2023; 29:e202301428. [PMID: 37494303 DOI: 10.1002/chem.202301428] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
The activation and functionalization of carbon dioxide entails great interest related to its abundance, low toxicity and associated environmental problems. However, the inertness of CO2 has posed a challenge towards its efficient conversion to added-value products. In this review we discuss one of the strategies that have been widely used to capture and activate carbon dioxide, namely the use of donor-acceptor interactions by partnering a Lewis acidic and a Lewis basic fragment. This type of CO2 activation resembles that found in metalloenzymes, whose outstanding performance in catalytically transforming carbon dioxide encourages further bioinspired research. We have divided this review into three general sections based on the nature of the active sites: metal-free examples (mainly formed by frustrated Lewis pairs), main group-transition metal combinations, and transition metal heterobimetallic complexes. Overall, we discuss one hundred compounds that cooperatively activate carbon dioxide by donor-acceptor interactions, revealing a wide range of structural motifs.
Collapse
Affiliation(s)
- Marina Pérez-Jiménez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Helena Corona
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Felipe de la Cruz-Martínez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
4
|
Poolwong J, Kracht F, Moinet E, Liang Y, D'Elia V, Anwander R. Samarium- and Ytterbium-Grafted Periodic Mesoporous Silica for Carbon Dioxide Capture and Conversion. Inorg Chem 2023; 62:17972-17984. [PMID: 37856826 DOI: 10.1021/acs.inorgchem.3c02995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Immobilized coordination compounds of Lewis acidic metals are powerful catalytic components of systems for the cycloaddition of CO2 to epoxides that do not require sophisticated coordination frameworks to harness the metal center and modulate its activity. Surface organometallic chemistry (SOMC) is a valuable methodology to prepare well-defined and site-isolated surface complexes and coordination compounds on metal oxides, with ligand environments easily adjustable to a targeted catalytic reaction. In this work, the SOMC methodology is applied to prepare SmII, YbII, and SmIII alkoxide surface complexes on periodic mesoporous (organo)silica of distinct pore symmetry/size for application in the CO2 cycloaddition reaction. The surface complexes are readily accessible by the grafting of the bis(trimethylsilyl)amide precursors LnII[N(SiMe3)2]2(THF)2 (Ln = Sm, Yb) and SmIII[N(SiMe3)2]3, followed by ligand exchange with alcohols (ethanol and neopentanol). The use of periodic mesoporous supports led to hybrid materials with relatively high surface areas and pore sizes, affording good performance in CO2 capture and in the cycloaddition of CO2 to epoxides under mild conditions (60-80 °C, 1-10 bar). In terms of catalytic performance, recyclability, and low amount of added nucleophile TBAX (X = Br, I), the most active materials prepared in this work compare well to a variety of previously reported SOMC-derived surface complexes and to other heterogeneous Lewis acids displaying more elaborate ligand environments.
Collapse
Affiliation(s)
- Jitpisut Poolwong
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo1, Payupnai, WangChan, 21210 Rayong, Thailand
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Felix Kracht
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Eric Moinet
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Yucang Liang
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Valerio D'Elia
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo1, Payupnai, WangChan, 21210 Rayong, Thailand
| | - Reiner Anwander
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Tallarida MA, Olivito F, Navo CD, Algieri V, Jiritano A, Costanzo P, Poveda A, Moure MJ, Jiménez-Barbero J, Maiuolo L, Jiménez-Osés G, De Nino A. Highly Diastereoselective Multicomponent Synthesis of Spirocyclopropyl Oxindoles Enabled by Rare-Earth Metal Salts. Org Lett 2023; 25:3001-3006. [PMID: 37125666 PMCID: PMC10167684 DOI: 10.1021/acs.orglett.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The synthesis of polysubstituted spirocyclopropyl oxindoles using a series of rare-earth metal (REM) salts is reported. REMs, in particular Sc(OTf)3, allowed access to the target compounds by a multicomponent reaction with high diastereoselectivity (≤94:6:0:0). Density functional theory calculations on the model reaction are consistent with the observed selectivity and revealed that the special coordinating capabilities and the oxophilicity of the metal are key factors in inducing the formation of one main diastereoisomer.
Collapse
Affiliation(s)
- Matteo A Tallarida
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Maria J Moure
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, Leioa 48940, Bizkaia, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| |
Collapse
|
6
|
Hoseini KS, Razaghi M, Nouri T, Khorasani M. Direct coupling of CO 2 with epoxides catalyzed by lanthanum(III) supported on magnetic mesoporous organosilica nanoparticles. Sci Rep 2023; 13:5521. [PMID: 37016071 PMCID: PMC10073222 DOI: 10.1038/s41598-023-32647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/30/2023] [Indexed: 04/06/2023] Open
Abstract
Lanthanum(III) supported on the magnetic mesoporous organosilica nanoparticle (La@MON) has been described as an efficient, simple, and durable heterogeneous catalyst for the synthesis of 5-membered cyclic carbonates from carbon dioxide (CO2) and epoxides. Under optimized reaction conditions, various terminal epoxides have been converted to the corresponding carbonates in the presence of 0.3 mol% La@MON and 0.5 mol% tetrabutylammonium iodide (TBAI) as co-catalyst at relatively mild reaction conditions. It was also found that La@MON catalysts had significantly higher catalytic activity than some selected reference catalysts, which can be explained by the abundance of lanthanum(III) species acting as Lewis acidic sites for activating both carbon dioxide and epoxide molecules, along with the fact that the catalyst channels are short and provided facile mass transfer. The catalyst showed good reusability for at least five reaction cycles while the magnetic core of the catalyst helps the easy separation of the catalyst by just using an external magnet.
Collapse
Affiliation(s)
- Kosar Sadat Hoseini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan, 45137-66731, Iran
| | - Masoumeh Razaghi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan, 45137-66731, Iran
| | - Tohid Nouri
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan, 45137-66731, Iran
| | - Mojtaba Khorasani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
7
|
Ranjan P, Saptal VB, Bera JK. Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides. CHEMSUSCHEM 2022; 15:e202201183. [PMID: 36036640 DOI: 10.1002/cssc.202201183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The inevitable emission of carbon dioxide (CO2 ) due to the burning of a substantial amount of fossil fuels has led to serious energy and environmental challenges. Metal-based catalytic CO2 transformations into commodity chemicals are a favorable approach in the CO2 mitigation strategy. Among these transformations, selective hydrogenation of CO2 to methanol is the most promising process that not only fulfils the energy demands but also re-balances the carbon cycle. The investigation of CO2 adsorption on the surface of heterogeneous catalyst is highly important because the formation of various intermediates which determines the selectivity of product. Transition metal carbides (TMCs) have received considerable attention in recent years because of their noble metal-like reactivity, ceramic-like properties, high chemical and thermal stability. These features make them excellent catalytic materials for a variety of transformations such as CO2 adsorption and its conversion into value-added chemicals. Herein, the catalytic properties of TMCs are summarize along with synthetic methods, CO2 binding modes, mechanistic studies, effects of dopant on CO2 adsorption, and carbon/metal ratio in the CO2 hydrogenation reaction to methanol using computational as well as experimental studies. Additionally, this Review provides an outline of the challenges and opportunities for the development of potential TMCs in CO2 hydrogenation reactions.
Collapse
Affiliation(s)
- Prabodh Ranjan
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vitthal B Saptal
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
8
|
Simler T, McCabe KN, Maron L, Nocton G. CO reductive oligomerization by a divalent thulium complex and CO 2-induced functionalization. Chem Sci 2022; 13:7449-7461. [PMID: 35919756 PMCID: PMC9241974 DOI: 10.1039/d2sc01798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
The divalent thulium complex [Tm(Cpttt)2] (Cpttt = 1,2,4-tris(tert-butyl)cyclopentadienyl) reacts with CO to afford selective CO reductive dimerization and trimerization into ethynediolate (C2) and ketenecarboxylate (C3) complexes, respectively. DFT calculations were performed to shed light on the elementary steps of CO homologation and support a stepwise chain growth. The attempted decoordination of the ethynediolate fragment by treatment with Me3SiI led to dimerization and rearrangement into a 3,4-dihydroxyfuran-2-one complex. Investigation of the reactivity of the C2 and C3 complexes towards other electrophiles led to unusual functionalization reactions: while the reaction of the ketenecarboxylate C3 complex with electrophiles yielded new multicarbon oxygenated complexes, the addition of CO2 to the ethynediolate C2 complex resulted in the formation of a very reactive intermediate, allowing C-H activation of aromatic solvents. This original intermolecular reactivity corresponds to an unprecedented functionalization of CO-derived ligands, which is induced by CO2.
Collapse
Affiliation(s)
- Thomas Simler
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay Palaiseau 91120 France
| | - Karl N McCabe
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS Toulouse France
| | - Laurent Maron
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS Toulouse France
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay Palaiseau 91120 France
| |
Collapse
|
9
|
Yao Q, Shi Y, Wang Y, Zhu X, Yuan D, Yao Y. Bifunctional Rare‐Earth Metal Catalysts for Conversion of CO2 and Epoxides into Cyclic Carbonates. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Quanyou Yao
- Suzhou University: Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University CHINA
| | - Yize Shi
- Suzhou University: Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University CHINA
| | - Yaorong Wang
- Suzhou University: Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University CHINA
| | - Xuehua Zhu
- Suzhou University of Science and Technology School of Chemistry and Life Science Suzhou CHINA
| | - Dan Yuan
- Suzhou University: Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University CHINA
| | - Yingming Yao
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Ren'ai road 199 215123 Suzhou CHINA
| |
Collapse
|
10
|
Willauer AR, Fadaei-Tirani F, Zivkovic I, Sienkiewicz A, Mazzanti M. Structure and Reactivity of Polynuclear Divalent Lanthanide Disiloxanediolate Complexes. Inorg Chem 2022; 61:7436-7447. [PMID: 35505299 DOI: 10.1021/acs.inorgchem.2c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trinuclear molecular complexes of europium (II) and ytterbium(II) [Ln3{(Ph2SiO)2O}3(THF)6], 1-Ln3L3 (Ln = Eu and Yb), supported by the dianionic tetraphenyl disiloxanediolate ligand, were synthesized via protonolysis of the [Ln{N(SiMe3)2}2(THF)2] complexes. In contrast, the reaction of [Sm{N(SiMe3)2}2(THF)2] with the (Ph2SiOH)2O ligand led to the isolation of the mixed-valent Sm(II)/Sm(III) complex [Sm3{(Ph2SiO)2O}3{N(SiMe3)2}(THF)4], 2-Sm3L3, which was crystallographically characterized. The Eu(II) complex 1-Eu3L3 displays weak ferromagnetic coupling between the Eu(II) metal centers (J = 0.1035 cm-1). The addition of 3 equiv of (Ph2SiOK)2O to 1-Eu3L3 resulted in the formation of the polynuclear Eu(II) dimer of dimers [K4Eu2{(Ph2SiO)2O}4(Et2O)2]2, 3-Eu2L4. Complexes 1-Ln3L3 (Ln = Eu and Yb) are stable in solution at room temperature, while 3-Eu2L4 shows higher reactivity and rapidly decomposes to give the mixed-valent Eu(II)/Eu(III) species [K3Eu2{(Ph2SiO)2O}4], 4-Eu2L4. Complex 1-Yb3L3 affects the slow reductive disproportionation of carbon dioxide, but 1-Eu3L3 does not display any reactivity toward CO2. However, the presence of one additional (Ph2SiO-)2O per Eu(II) metal center in 3-Eu2L4 increases dramatically the reductive ability of the Eu(II) metal centers, affording the first example of carbon dioxide activation by an isolated divalent europium complex. The reduction of CO2 by 3-Eu2L4 is immediate, and carbonate is formed selectively after the addition of a stoichiometric amount of CO2.
Collapse
Affiliation(s)
- Aurélien R Willauer
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,ADSresonances Sàrl; Route de Genève 60B, 1028 Préverenges, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
|
12
|
Shi X, Rajeshkumar T, Maron L, Cheng J. CO, CO 2 and CS 2 activation by divalent ytterbium hydrido complexes. Chem Commun (Camb) 2022; 58:1362-1365. [PMID: 34989379 DOI: 10.1039/d1cc06449e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Treatment of a divalent ytterbium hydride complex [(TpAd,iPr)Yb(H)(THF)] (TpAd,iPr = hydrotris(3-adamantyl-5-isopropyl-pyrazolyl)borate) (1) with CO, CO2 and CS2 resulted in the formation of a divalent ytterbium ethenediolate complex [(TpAd,iPr)Yb]2(cis-OCHCHO) (2), a formate complex [(TpAd,iPr)Yb(κ2-O2CH)(THF)] (3), and a trivalent ytterbium ethenetetrathiolate complex [(TpAd,iPr)YbIII]2(C2S4) (4), respectively. DFT calculations were carried out to elucidate the reaction profiles of complexes 3 and 4.
Collapse
Affiliation(s)
- Xianghui Shi
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street, Changchun 130022, China.
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, UPS, Université de Toulouse 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Laurent Maron
- LPCNO, CNRS & INSA, UPS, Université de Toulouse 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Jianhua Cheng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street, Changchun 130022, China. .,University of Science and Technology of China Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Korona K, Kornowicz A, Justyniak I, Terlecki M, Błachowski A, Lewiński J. Non-redox reactivity of V( ii) and Fe( ii) formamidinates towards CO 2 resulting in the formation of novel M( ii) carbamates. Dalton Trans 2022; 51:16557-16564. [DOI: 10.1039/d2dt02274e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple CO2 insertions into the M–N bonds of V(ii) and Fe(ii) bis(formamidinates) led to the isolation of three novel carbamates. The CO2 insertion effectivity depended on the solvent used and the metal centre's coordination sphere geometry.
Collapse
Affiliation(s)
- Krzesimir Korona
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Arkadiusz Kornowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Michał Terlecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Artur Błachowski
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
14
|
Mortis A, Maichle-Mössmer C, Anwander R. Yttrium tris(trimethylsilylmethyl) complexes grafted onto MCM-48 mesoporous silica nanoparticles. Dalton Trans 2021; 51:1070-1085. [PMID: 34939637 DOI: 10.1039/d1dt03876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of tris(trimethylsilylmethyl) yttrium donor adduct complexes was synthesized and fully characterized by X-ray diffraction, 1H/13C/29Si/31P/89Y heteronuclear NMR and FTIR spectroscopies as well as elemental analyses. Treatment of Y(CH2SiMe3)3(thf)x with various donors Do led to complete (Do = TMEDA, DMAP) and partial displacement of THF (Do = NHCiPr, DMPE). Exceptionally large 89Y NMR shifts to low field were observed for the new complexes. Complexes Y(CH2SiMe3)3(tmeda) and Y(CH2SiMe3)3(dmpe)(thf) were chosen to perform surface organometallic chemistry, due to a comparatively higher thermal stability and the availability of the 31P nucleus as a spectroscopic probe, respectively. Mesoporous nanoparticles of the MCM-48-type were synthesized and used as a 3rd generation silica support. The parent and hybrid materials were characterized using X-ray powder diffraction, solid-state-NMR spectroscopy, DRIFTS, elemental analyses, N2-physisorption, and scanning electron microscopy (SEM). The presence of surface-bound yttrium alkyl moieties was further proven by the reaction with carbon dioxide. Quantification of the surface silanol population by means of HN(SiHMe2)2-promoted surface silylation is shown to be superior to titration with lithium alkyl LiCH2SiMe3.
Collapse
Affiliation(s)
- Alexandros Mortis
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Cäcilia Maichle-Mössmer
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Reiner Anwander
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| |
Collapse
|
15
|
Berger T, Lebon J, Maichle‐Mössmer C, Anwander R. CeCl
3
/
n
‐BuLi: Enträtselung von Imamotos Organocer‐Reagenz. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tassilo Berger
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Jakob Lebon
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Cäcilia Maichle‐Mössmer
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Reiner Anwander
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| |
Collapse
|
16
|
Yao Q, Chen Y, Wang Y, Yuan D, You H, Yao Y. Alternating copolymerization of CO2 and cyclohexene oxide initiated by rare-earth metal complexes stabilized by o-phenylenediamine-bridged tris(phenolate) ligand. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Berger T, Lebon J, Maichle-Mössmer C, Anwander R. CeCl 3 /n-BuLi: Unraveling Imamoto's Organocerium Reagent. Angew Chem Int Ed Engl 2021; 60:15622-15631. [PMID: 33905590 PMCID: PMC8362106 DOI: 10.1002/anie.202103889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/31/2022]
Abstract
CeCl3(thf) reacts at low temperatures with MeLi, t‐BuLi, and n‐BuLi to isolable organocerium complexes. Solvent‐dependent extensive n‐BuLi dissociation is revealed by 7Li NMR spectroscopy, suggesting “Ce(n‐Bu)3(thf)x” or solvent‐separated ion pairs like “[Li(thf)4][Ce(n‐Bu)4(thf)y]” as the dominant species of the Imamoto reagent. The stability of complexes Li3Ln(n‐Bu)6(thf)4 increases markedly with decreasing LnIII size. Closer inspection of the solution behavior of crystalline Li3Lu(n‐Bu)6(thf)4 and mixtures of LuCl3(thf)2/n‐BuLi in THF indicates occurring n‐BuLi dissociation only at molar ratios of <1:3. n‐BuLi‐depleted complex LiLu(n‐Bu)3Cl(tmeda)2 was obtained by treatment of Li2Lu(n‐Bu)5(tmeda)2 with ClSiMe3, at the expense of LiCl incorporation. Imamoto's ketone/tertiary alcohol transformation was examined with 1,3‐diphenylpropan‐2‐one, affording 99 % of alcohol.
Collapse
Affiliation(s)
- Tassilo Berger
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Jakob Lebon
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Cäcilia Maichle-Mössmer
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Reiner Anwander
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
18
|
Liu J, Singh K, Dutta S, Feng Z, Koley D, Tan G, Wang X. Yttrium germole dianion complexes with Y-Ge bonds. Dalton Trans 2021; 50:5552-5556. [PMID: 33908995 DOI: 10.1039/d1dt00798j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of dipotassium 3,4-dimethyl-2,5-bis(trimethylsilyl)-germole dianion K2[1] with YCl3 and Cp*YCl2 (Cp* = cyclopentadienyl) in THF at room temperature afforded the dianion salt [(K-cryptand-222)2][1-YCl3] (K2[2]) and the dimeric complex [1-Y-Cp*]2 (3), respectively. While the polymeric complex {[(1)2-Y-K(toluene)]2}n (4) was obtained from the reaction of K2[1] and half molar equivalent of YCl3(THF)3.5 in toluene at 80 °C. The germole dianions in complexes 3 and 4 feature η5/η1 coordination interactions with the yttrium atoms. They represent the first examples of rare earth (RE) complexes containing RE-Ge bonds other than the RE-GeR3 structural type.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Kalyan Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Bayer U, Jenner A, Riedmaier J, Maichle-Mössmer C, Anwander R. Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation. Molecules 2021; 26:molecules26071957. [PMID: 33807172 PMCID: PMC8037029 DOI: 10.3390/molecules26071957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Homoleptic ceric pyrazolates (pz) Ce(RR’pz)4 (R = R’ = tBu; R = R’ = Ph; R = tBu, R’ = Me) were synthesized by the protonolysis reaction of Ce[N(SiHMe2)2]4 with the corresponding pyrazole derivative. The resulting complexes were investigated in their reactivity toward CO2, revealing a significant influence of the bulkiness of the substituents on the pyrazolato ligands. The efficiency of the CO2 insertion was found to increase in the order of tBu2pz < Ph2pz < tBuMepz < Me2pz. For comparison, the pyrrole-based ate complexes [Ce2(pyr)6(µ-pyr)2(thf)2][Li(thf)4]2 (pyr = pyrrolato) and [Ce(cbz)4(thf)2][Li(thf)4] (cbz = carbazolato) were obtained via protonolysis of the cerous ate complex Ce[N(SiHMe2)2]4Li(thf) with pyrrole and carbazole, respectively. Treatment of the pyrrolate/carbazolate complexes with CO2 seemed promising, but any reversibility could not be observed.
Collapse
|