1
|
Wang X, He S, Chen J, Wei J, Chen C, Shi W, Wu D, Fu L, Yang T. A highly efficient lanthanide coordination polymer luminescent material for the multi-task detection of environmental pollutants. Dalton Trans 2023; 53:276-284. [PMID: 38044870 DOI: 10.1039/d3dt03218c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
It is challenging to explore novel-structure lanthanide coordination polymers (Ln-CPs) for sensing environmental pollutants. Herein, we designed and synthesized an organic bridging linker 3-(carboxymethoxy)-1-(carboxymethyl) pyrazole-4-carboxylic acid (H3ccpc), and then successfully prepared and characterized a novel Ln-CP, namely [Tb2(ccpc)2(H2O)6]·1.5H2O (ccpcTb). Structural analysis indicates that ccpcTb exhibits a two-dimensional structure, in which Tb ions are in an eight-coordinated environment. The photoluminescence performance of ccpcTb was discussed in detail. The ccpcTb displays bright green luminescence and behaves as a multi-responsive luminescent sensor toward Fe3+ ions, Cr2O72- ions and 2,4,6-trinitrophenol with high selectivity and low detection limits. Furthermore, the possible luminescence sensing mechanisms have been addressed in detail. The luminescence quenching mechanism of sensing Fe3+ and Cr2O72- is attributed to the energy competitive absorption, while that of sensing TNP is due to the synergistic effect of energy competitive absorption and photo-induced electron transfer.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry & Chemical Engineering, Jiangsu Laboratory of Precious Metals Processing Technology and Application, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Shunsheng He
- School of Chemistry & Chemical Engineering, Jiangsu Laboratory of Precious Metals Processing Technology and Application, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jun Chen
- School of Chemistry & Chemical Engineering, Jiangsu Laboratory of Precious Metals Processing Technology and Application, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jiamin Wei
- School of Chemistry & Chemical Engineering, Jiangsu Laboratory of Precious Metals Processing Technology and Application, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Chaoyue Chen
- School of Chemistry & Chemical Engineering, Jiangsu Laboratory of Precious Metals Processing Technology and Application, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Wenyan Shi
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Dayu Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213001, P. R. China.
| | - Lianshe Fu
- Department of Physics, Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tinghai Yang
- School of Chemistry & Chemical Engineering, Jiangsu Laboratory of Precious Metals Processing Technology and Application, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
2
|
Zhang MY, Yi FY, Guo QZ, Luo FL, Liu LJ, Guo JF. A ratiometric luminescence sensing platform based on lanthanide-based silica nanoparticles for selective and sensitive detection of Fe 3+ and Cu 2+ ions. Dalton Trans 2023; 52:3300-3307. [PMID: 36847192 DOI: 10.1039/d3dt00119a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Detection of Fe(III) and Cu(II) in water is highly desirable because their abnormal levels can cause serious harm to human health and environmental safety. In this work, a ratiometric luminescence sensing platform based on lanthanide-based silica nanoparticles was constructed for the detection of Fe3+ and Cu2+ ions. The terbium-silica nanoparticles (named SiO2@Tb) with dual-emission signals were successfully prepared by grafting Tb3+ ions onto trimellitic anhydride (TMA) functionalized silica nanospheres. It can serve as a ratiometric fluorescent probe for the detection of Fe3+ and Cu2+ ions in water with the green emission of Tb3+ ions as a response signal and the blue emission of silica nanospheres as the reference signal. Significantly, an easy-to-differentiate color change for visual detection was also realized. SiO2@Tb shows high sensitivity even in very low concentration regions towards the sensing of Fe3+ and Cu2+ with low detection limits of 0.75 μM and 0.91 μM, respectively. Moreover, the mechanism for the luminescence quenching of SiO2@Tb was systematically investigated, and was attributed to the synergetic effect of the absorption competition quenching (ACQ) mechanism and cation exchange. This study demonstrates that SiO2@Tb can be employed as a promising fluorescent probe for the detection of Fe3+ and Cu2+ ions, and the combination of lanthanide ions with silica nanoparticles is an effective strategy to construct a ratiometric fluorescent sensing platform for the determination of analytes in environmental detection.
Collapse
Affiliation(s)
- Meng-Yao Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Feng-Ying Yi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Qing-Zhong Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Fa-Liang Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Lan-Jun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China. .,School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jun-Fang Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
3
|
Advances in organic fluorescent probes for bromide ions, hypobromous acid and related eosinophil peroxidase-A review. Anal Chim Acta 2023; 1244:340626. [PMID: 36737144 DOI: 10.1016/j.aca.2022.340626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Elemental bromine is among the essential elements for human health. In living organisms, bromide (Br-) and hydrogen peroxide (H2O2) can be catalyzed by eosinophil peroxidase (EPO) to generate a reactive oxygen species (ROS), hypobromous acid (HOBr), which exhibits properties similar to those of hypochlorous acid (HOCl). Moreover, HOBr possesses strong oxidative and antibacterial properties, which are believed to play an important role in the neutrophil host defense system. However, overexpression or misexpression of HOBr can cause organismal and tissue damage, which is closely related to the development of various diseases. Therefore, an increasing number of studies has demonstrated physiological associations with the conversion of Br- to HOBr. With the development of fluorescence imaging technology, developing fluorescent probes with novel structures and high selectivity to detect changes in Br-, HOBr, and the related enzyme EPO levels in organisms has become very important. This paper summarizes Br-, HOBr, and EPO fluorescent probes reported in recent years, including the design principles, mechanisms, optical properties, and bioapplications. Finally, the application prospects and challenges are also discussed.
Collapse
|
4
|
Li ZJ, Wang X, Zhu L, Ju Y, Wang Z, Zhao Q, Zhang ZH, Duan T, Qian Y, Wang JQ, Lin J. Hydrolytically Stable Zr-Based Metal-Organic Framework as a Highly Sensitive and Selective Luminescent Sensor of Radionuclides. Inorg Chem 2022; 61:7467-7476. [PMID: 35514048 DOI: 10.1021/acs.inorgchem.2c00545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective detections of radionuclides including uranium and its predominant fission products, for example, iodine, are highly desired owing to their radiotoxicity and potential threat to human health. However, traditional analytical techniques of radionuclides are instrument-demanding, and chemosensors targeted for sensitization of radionuclides remain limited. In this regard, we report a sensitive and selective sensor of UO22+ and I- based on the unique quenching behavior of a luminescent Zr-based metal-organic framework, Zr6O4(OH)4(OH)6(H2O)6(TCPE)1.5·(H2O)24(C3H7NO)9 (Zr-TCPE). Immobilization of the luminescent tetrakis(4-carboxyphenyl)ethylene (TCPE4-) linkers by Zr6 nodes enhances the photoluminescence quantum yield of Zr-TCPE, which facilitates the effective sensing of radionuclides in a "turn-off" manner. Moreover, Zr-TCPE can sensitively and selectively recognize UO22+ and I- ions with the lowest limits of detection of 0.67 and 0.87 μg/kg, respectively, of which the former one is much lower than the permissible value (30 μg/L) defined by the U.S. EPA. In addition, Zr-TCPE features excellent hydrolytic stability and can withstand pH conditions ranging from 3 to 11. To facilitate real-world applications, we have further fabricated polyvinylidene fluoride-integrating Zr-TCPE as luminescence-based sensor membranes for on-site sensing of UO22+ and I-.
Collapse
Affiliation(s)
- Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Xue Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No. 1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Lin Zhu
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yu Ju
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No. 1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Zeru Wang
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Qian Zhao
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No. 1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Tao Duan
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, P. R. China
| |
Collapse
|
5
|
Kong YJ, Hou GZ, Gong ZN, Zhao FT, Han LJ. Fluorescence detection of malachite green and cations (Cr 3+, Fe 3+ and Cu 2+) by a europium-based coordination polymer. RSC Adv 2022; 12:8435-8442. [PMID: 35424814 PMCID: PMC8984937 DOI: 10.1039/d2ra00077f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Due to remarkable fluorescence characteristics, lanthanide coordination polymers (CP) have been widely employed in fluorescence detection, but it is rarely reported that they act as multifunctional luminescent probes dedicated to detecting malachite green (MG) and various metal ions. A europium-based CP fluorescent probe, Eu(PDCA)2(H2O)6 (PDCA = 2,6-pyridinedicarboxylic acid), has been synthesized and exhibited excellent recognition ability for malachite green and metal cations (Cr3+, Fe3+ and Cu2+) among 11 metal cations, 13 anions and six other compounds. The recognition was achieved by fluorescence quenching when MG, Cr3+, Fe3+ and Cu2+ were added to a suspension of Eu(PDCA)2(H2O)6 respectively. Eu(PDCA)2(H2O)6 is a multifunctional luminescent probe, and displayed high quenching efficiencies K sv (2.10 × 106 M-1 for MG; 1.46 × 105 M-1 for Cr3+; 7.26 × 105 M-1 for Fe3+; 3.64 × 105 M-1 for Cu2+), and low detection limits (MG: 0.039 μM; Cr3+: 0.539 μM; Fe3+: 0.490 μM; Cu2+: 0.654 μM), presenting excellent selectivity and sensitivity, especially for MG. In addition, Eu(PDCA)2(H2O)6 was also made into fluorescent test strips, which can rapidly and effectively examine trace amounts of MG, Cr3+, Fe3+ and Cu2+ in aqueous solutions. This work provides a new perspective for detecting malachite green in fish ponds and heavy metal ions in waste water.
Collapse
Affiliation(s)
- Ya-Jie Kong
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
| | - Guo-Zheng Hou
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
| | - Zhao-Ning Gong
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
| | - Feng-Tan Zhao
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
| | - Li-Juan Han
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
6
|
Zhang MY, Yi FY, Liu LJ, Yan GP, Liu H, Guo JF. An europium(III) metal-organic framework as a multi-responsive luminescent sensor for highly sensitive and selective detection of 4-nitrophenol and I - and Fe 3+ ions in water. Dalton Trans 2021; 50:15593-15601. [PMID: 34668507 DOI: 10.1039/d1dt02312h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A luminescence sensor based on an europium(III)-based lanthanide-organic framework, [Eu(BCB)(DMF)]·(DMF)1.5(H2O)2 (1), was synthesized via a solvothermal method using 4,4',4''-benzenetricarbonyltribenzoic acid (H3BCB) as a bridging ligand. Single-crystal X-ray diffraction indicates that Eu centers are eight-coordinated with a trigonal dodecahedron and a square antiprismatic configuration, and adjacent Eu atoms are bridged by BCB organic linkers to form a 3D rod-packing structure. Photoluminescence studies show that compound 1 emits bright red luminescence and behaves as a multi-responsive luminescent sensor toward 4-nitrophenol (4-NP) and I- and Fe3+ ions in water with high sensitivity, selectivity and low detection limits. Furthermore, the possible luminescence sensing mechanisms were also investigated by PXRD analysis, UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The recognition mechanism for 4-NP and I- ions can be attributed to the competition absorption and that for Fe3+ ions is considered to be a multi-quenching mechanism dominated by competition absorption. This study demonstrates that the lanthanide-based MOF might be a promising candidate for the detection of 4-NP and I- and Fe3+ ions in aqueous medium.
Collapse
Affiliation(s)
- Meng-Yao Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Feng-Ying Yi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Lan-Jun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China. .,School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Guo-Ping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Hui Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jun-Fang Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
7
|
Guo JF, Zhang MY, Guo QZ, Yan GP, Liu LJ. Highly stable terbium(III)-based metal-organic framework for the detection of m-dinitroaromatics and Fe3+ in water. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|