1
|
Gunathilake C, Soliman I, Panthi D, Tandler P, Fatani O, Ghulamullah NA, Marasinghe D, Farhath M, Madhujith T, Conrad K, Du Y, Jaroniec M. A comprehensive review on hydrogen production, storage, and applications. Chem Soc Rev 2024; 53:10900-10969. [PMID: 39421882 DOI: 10.1039/d3cs00731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The transformation from combustion-based to renewable energy technologies is of paramount importance due to the rapid depletion of fossil fuels and the dramatic increase in atmospheric CO2 levels resulting from growing global energy demands. To achieve the Paris Agreement's long-term goal of carbon neutrality by 2050, the full implementation of clean and sustainable energy sources is essential. Consequently, there is an urgent demand for zero or low-carbon fuels with high energy density that can produce electricity and heat, power vehicles, and support global trade. This review presents the global motivation to reduce carbon dioxide by utilizing hydrogen technology, which is key to meeting future energy demands. It discusses the basic properties of hydrogen and its application in both prototype and large-scale efficient technologies. Hydrogen is a clean fuel and a versatile energy carrier; when used in fuel cells or combustion devices, the final product is water vapor. Hydrogen gas production methods are reviewed across renewable and non-renewable sources, with reaction processes categorized as green, blue, grey, black, pink, and turquoise, depending on the reaction pathway and CO2 emissions management. This review covers the applications of hydrogen technology in petroleum refining, chemical and metrological production, hydrogen fuel cell electric vehicles (HFCEVs), backup power generation, and its use in transportation, space, and aeronautics. It assesses physical and material-based hydrogen storage methods, evaluating their feasibility, performance, and safety, and comparing HFCEVs with battery and gasoline vehicles from environmental and economic perspectives. Finally, the prospects and challenges associated with hydrogen production, handling, storage, transportation, and safety are also discussed.
Collapse
Affiliation(s)
- Chamila Gunathilake
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH, 44242, USA.
- Department of Chemical & Process Engineering, Faculty of Engineering, University of Peradeniya, 20400, Sri Lanka
| | - Ibrahim Soliman
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44240, USA
| | - Dhruba Panthi
- Department of Engineering Technology, Kent State University at Tuscarawas, New Philadelphia, OH 44663, USA
| | - Peter Tandler
- Department of Chemistry, Walsh University, North Canton, OH, 44720, USA
- Center for Scientific Excellence, Walsh University, North Canton, OH, 44720, USA
| | - Omar Fatani
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
| | - Noman Alias Ghulamullah
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
| | - Dinesh Marasinghe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH, 44242, USA.
- Department of Chemical & Process Engineering, Faculty of Engineering, University of Peradeniya, 20400, Sri Lanka
| | - Mohamed Farhath
- Department of Chemical Sciences, South Eastern University of Sri Lanka, Sammanthurai, 32200, Sri Lanka
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka
| | - Kirt Conrad
- CEO/Executive Director, Stark Area Regional Transit Authority, 1600 Gateway Blvd SE., Canton, OH 44707, USA
| | - Yanhai Du
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
- Materials Science, College of Arts & Sciences, Kent State University, Kent, OH, 44242, USA
| | - Mietek Jaroniec
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
2
|
Delaporte S, Abánades Lázaro I, López-Cabrelles J, Mazarakioti EC, Chebourou S, Vitórica-Yrezábal IJ, Giménez-Marqués M, Mínguez Espallargas G. Imparting structural robustness of metal-organic cages based on oxo-dimolybdenum clusters. Dalton Trans 2023; 52:15682-15687. [PMID: 37646573 PMCID: PMC10628856 DOI: 10.1039/d3dt02482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
A family of robust and stable molybdenum-based metal-organic cages have been obtained based on the [Mo2O2(μ2-O)2]2+ secondary building unit. The resulting cages are decorated with different pyrdine derivatives that impart structural stability, resulting in the structural elucidation of the activated cage with single-crystal diffraction. The chemical robustness of the cage is also demonstrated by the post-synthetic modification of the cage, which allows the exchange of the pyridine derivatives without rupture of the cage.
Collapse
Affiliation(s)
- Solène Delaporte
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
- ENS Paris-Saclay, Département de Chimie, 4 Av. des Sciences, 91190 Gif-sur-Yvette, France
| | - Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Javier López-Cabrelles
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Eleni C Mazarakioti
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Sarah Chebourou
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | | | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | | |
Collapse
|
3
|
Dworzak MR, Montone CM, Halaszynski NI, Yap GPA, Kloxin CJ, Bloch ED. Rapid post-synthetic modification of porous coordination cages with copper-catalyzed click chemistry. Chem Commun (Camb) 2023; 59:8977-8980. [PMID: 37387311 PMCID: PMC11552439 DOI: 10.1039/d3cc02015k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Novel cobalt calixarene-capped and zirconium-based porous coordination cages were prepared with alkyne and azide functionality to leverage post-synthetic modification by click chemistry. While the calixarene-capped cages showed impressive stability when exposed to the most straightforward copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction conditions with copper(II) sulfate and sodium ascorbate as the reducing agent, milder reaction conditions were necessary to perform analogous CuAAC reactions on zirconium-based cages. Reaction kinetics were monitored by IR spectroscopy, confirming rapid reaction times (<3 hours).
Collapse
Affiliation(s)
- Michael R Dworzak
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Christine M Montone
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Nicole I Halaszynski
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
4
|
Li TT, Liu SN, Wu LH, Cai SL, Zheng SR. Strategies for the Construction of Functional Materials Utilizing Presynthesized Metal-Organic Cages (MOCs). Chempluschem 2022; 87:e202200172. [PMID: 35922387 DOI: 10.1002/cplu.202200172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Metal-organic cages (MOCs) that assemble from metal ions or metal clusters and organic ligands have attracted the interest of the scientific community because of their various functional coordination cavities. Unlike metal-organic frameworks (MOFs) with infinite frameworks, MOCs have discrete structures, making them soluble and stable in certain solvents and facilitating their application as starting reagents in the further construction of single components or composite materials. In recent years, increasing progress has been made in this field. In this review, we introduce these works from the perspective of design strategies, and focus on how presynthesized MOCs can be used to construct functional materials. Finally, we discuss the challenges and development prospects in this field.
Collapse
Affiliation(s)
- Tian-Tian Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, P. R. China
| | - Shu-Na Liu
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China
| | - Liang-Hua Wu
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China
| | - Song-Liang Cai
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China
| | - Sheng-Run Zheng
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, Guangdong, 511517, P. R. China
| |
Collapse
|
5
|
Liu J, Wang Z, Cheng P, Zaworotko MJ, Chen Y, Zhang Z. Post-synthetic modifications of metal–organic cages. Nat Rev Chem 2022; 6:339-356. [PMID: 37117929 DOI: 10.1038/s41570-022-00380-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Metal-organic cages (MOCs) are discrete, supramolecular entities that consist of metal nodes and organic linkers, which can offer solution processability and high porosity. Thereby, their predesigned structures can undergo post-synthetic modifications (PSMs) to introduce new functional groups and properties by modifying the linker, metal node, pore or surface environment. This Review explores current PSM strategies used for MOCs, including covalent, coordination and noncovalent methods. The effects of newly introduced functional groups or generated complexes upon the PSMs of MOCs are also detailed, such as improving structural stability or endowing desired functionalities. The development of the aforementioned design principles has enabled systematic approaches for the development and characterization of families of MOCs and, thereby, provides insight into structure-function relationships that will guide future developments.
Collapse
|
6
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|