1
|
Ge L, Li X, Zhang S, Cao S, Zheng J, Wang D, Zhang P. Comparing the photodegradation of typical antibiotics in ice and in water: Degradation kinetics, mechanisms, and effects of dissolved substances. CHEMOSPHERE 2024; 352:141489. [PMID: 38368963 DOI: 10.1016/j.chemosphere.2024.141489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
New antibiotic contaminants have been detected in both surface waters and natural ice across cold regions. However, few studies have revealed distinctions between their ice and aqueous photochemistry. In this study, the photodegradation and effects of the main dissolved substances on the photolytic kinetics were investigated for sulfonamides (SAs) and fluoroquinolones (FQs) in ice/water under simulated sunlight. The results showed that the photolysis of sulfamethizole (SMT), sulfachloropyridazine (SCP), enrofloxacin (ENR) and difloxacin (DIF) in ice/water followed the pseudo-first-order kinetics with their quantum yields ranging from 4.93 × 10-3 to 11.15 × 10-2. The individual antibiotics experienced disparate photodegradation rates in ice and in water. This divergence was attributed to the concentration-enhancing effect and the solvent cage effect that occurred in the freezing process. Moreover, the main constituents (Cl-, HASS, NO3- and Fe(III)) exhibited varying degrees of promotion or inhibition on the photodegradation of SAs and FQs in the two phases (p < 0.05), and these effects were dependent on the individual antibiotics and the matrix. Extrapolation of the laboratory data to the field conditions provided a reasonable estimate of environmental photolytic half-lives (t1/2,E) during midsummer and midwinter in cold regions. The estimated t1/2,E values ranged from 0.02 h for ENR to 14 h for SCP, which depended on the reaction phases, latitudes and seasons. These results revealed the similarities and differences between the ice and aqueous photochemistry of antibiotics, which is important for the accurate assessment of the fate and risk of these new pollutants in cold environments.
Collapse
Affiliation(s)
- Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Xuanyan Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Shuang Zhang
- School of Environmental Science and Technology, Dalian Maritime University, Dalian, 116026, PR China
| | - Shengkai Cao
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Jinshuai Zheng
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Degao Wang
- School of Environmental Science and Technology, Dalian Maritime University, Dalian, 116026, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
2
|
Chen MS, Mao Y, Snider A, Gupta P, Montoya-Castillo A, Zuehlsdorff TJ, Isborn CM, Markland TE. Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure. J Phys Chem Lett 2023; 14:6610-6619. [PMID: 37459252 DOI: 10.1021/acs.jpclett.3c01444] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.
Collapse
Affiliation(s)
- Michael S Chen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Andrew Snider
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Prachi Gupta
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Andrés Montoya-Castillo
- Department of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Christine M Isborn
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Carena L, Zoppi B, Sordello F, Fabbri D, Minella M, Minero C. Phototransformation of Vanillin in Artificial Snow by Direct Photolysis and Mediated by Nitrite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37269319 DOI: 10.1021/acs.est.3c01931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The photodegradation of vanillin, as a proxy of methoxyphenols emitted by biomass burning, was investigated in artificial snow at 243 K and in liquid water at room temperature. Nitrite (NO2-) was used as a photosensitizer of reactive oxygen and nitrogen species under UVA light, because of its key photochemical role in snowpacks and atmospheric ice/waters. In snow and in the absence of NO2-, slow direct photolysis of vanillin was observed due to back-reactions taking place in the quasi-liquid layer at the ice-grain surface. The addition of NO2- made the photodegradation of vanillin faster, because of the important contribution of photoproduced reactive nitrogen species in vanillin phototransformation. These species triggered both nitration and oligomerization of vanillin in irradiated snow, as the identified vanillin by-products showed. Conversely, in liquid water, direct photolysis was the main photodegradation pathway of vanillin, even in the presence of NO2-, which had negligible effects on vanillin photodegradation. The results outline the different role of iced and liquid water in the photochemical fate of vanillin in different environmental compartments.
Collapse
Affiliation(s)
- Luca Carena
- Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino, Italy
| | - Beatrice Zoppi
- Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino, Italy
| | - Fabrizio Sordello
- Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino, Italy
| | - Debora Fabbri
- Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino, Italy
| | - Marco Minella
- Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino, Italy
| | - Claudio Minero
- Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino, Italy
| |
Collapse
|
4
|
Li Z, Dong D, Zhang L, Li Y, Guo Z. Effect of fulvic acid concentration levels on the cleavage of piperazinyl and defluorination of ciprofloxacin photodegradation in ice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119499. [PMID: 35597482 DOI: 10.1016/j.envpol.2022.119499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Ice is an important physical and chemical sink for various pollutants in cold regions. The photodegradation of emerging fluoroquinolone (FQ) antibiotic contaminants with dissolved organic matter (DOM) in ice remains poorly understood. Here, the photodegradation of ciprofloxacin (CIP) and fulvic acid (FA) in different proportions as representative FQ and DOM in ice were investigated. Results suggested that the photodegradation rate constant of CIP in ice was 1.9 times higher than that in water. When CFA/CCIP ≤ 60, promotion was caused by FA sensitization. FA increased the formation rate of cleavage in the piperazine ring and defluorination products. When 60 < CFA/CCIP < 650, the effect of FA on CIP changed from promoting to inhibiting. When 650 ≤ CFA/CCIP ≤ 2600, inhibition was caused by both quenching effects of 143.9%-51.3% and light screening effects of 0%-48.7%. FA inhibited cleavage in the piperazine ring for CIP by the scavenging reaction intermediate of aniline radical cation in ice. When CFA/CCIP > 2600, the light screening effect was greater than the quenching effect. This work provides new insights into how DOM affects the FQ photodegradation with different concentration proportions, which is beneficial for understanding the environmental behaviors of fluorinated pharmaceuticals in cold regions.
Collapse
Affiliation(s)
- Zhuojuan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yanchun Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Chen Z, Bononi FC, Sievers CA, Kong WY, Donadio D. UV-Visible Absorption Spectra of Solvated Molecules by Quantum Chemical Machine Learning. J Chem Theory Comput 2022; 18:4891-4902. [PMID: 35913220 DOI: 10.1021/acs.jctc.1c01181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Predicting UV-visible absorption spectra is essential to understand photochemical processes and design energy materials. Quantum chemical methods can deliver accurate calculations of UV-visible absorption spectra, but they are computationally expensive, especially for large systems or when one computes line shapes from thermal averages. Here, we present an approach to predict UV-visible absorption spectra of solvated aromatic molecules by quantum chemistry (QC) and machine learning (ML). We show that a ML model, trained on the high-level QC calculation of the excitation energy of a set of aromatic molecules, can accurately predict the line shape of the lowest-energy UV-visible absorption band of several related molecules with less than 0.1 eV deviation with respect to reference experimental spectra. Applying linear decomposition analysis on the excitation energies, we unveil that our ML models probe vertical excitations of these aromatic molecules primarily by learning the atomic environment of their phenyl rings, which align with the physical origin of the π →π* electronic transition. Our study provides an effective workflow that combines ML with quantum chemical methods to accelerate the calculations of UV-visible absorption spectra for various molecular systems.
Collapse
Affiliation(s)
- Zekun Chen
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Fernanda C Bononi
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Charles A Sievers
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Davide Donadio
- Department of Chemistry, University of California Davis 95616, California, United States
| |
Collapse
|
6
|
Liu C, Chen D, Chen X. Atmospheric Reactivity of Methoxyphenols: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2897-2916. [PMID: 35188384 DOI: 10.1021/acs.est.1c06535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Xiao'e Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| |
Collapse
|
7
|
Li Z, Dong D, Zhang L, Hua X, Guo Z. Photodegradation of norfloxacin in ice: Role of the fluorine substituent. CHEMOSPHERE 2022; 291:133042. [PMID: 34822864 DOI: 10.1016/j.chemosphere.2021.133042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Ice is an important medium in cold regions, because it regulates the environmental behaviors and the fate of pollutants. The photodegradation of fluoroquinolone (FQ) antibiotics as emerging contaminants of concern in ice remains poorly understood. Here, the photodegradation of fluorine-containing norfloxacin (NOR) as one model of FQs in ice formed from freezing solutions was investigated. Pipemidic acid (PPA) as a structural analogue of NOR was selected to compare the effect of molecular structure on the antibiotic photodegradation in the ice. Results suggested that the photodegradation rate constant of NOR in ice relative to pure water increased by 40.0%. Both the absorbance in the absorption spectra and quantum yields of NOR in ice over water increased by 1.4 times. Direct photodegradation mainly caused the defluorination of NOR, which was more important than cleavage and oxidation of the piperazine ring by self-sensitized photooxidation in ice. The defluorination rate of NOR in the ice relative to water increased by about 12.7%. The fluorine substituent played a more important role in the NOR photodegradation in the ice, resulting in a 1.6-fold increase in the photodegradation rate constant of NOR relative to PPA. This work provides a new insight into the role of fluorine substituents in the photodegradation of fluorinated pharmaceuticals in cold regions.
Collapse
Affiliation(s)
- Zhuojuan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Bononi FC, Chen Z, Rocca D, Andreussi O, Hullar T, Anastasio C, Donadio D. Bathochromic Shift in the UV–Visible Absorption Spectra of Phenols at Ice Surfaces: Insights from First-Principles Calculations. J Phys Chem A 2020; 124:9288-9298. [DOI: 10.1021/acs.jpca.0c07038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fernanda C. Bononi
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Zekun Chen
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Dario Rocca
- Université de Lorraine, CNRS, LPTC, F-54000 Nancy, France
| | - Oliviero Andreussi
- Department of Physics, University of North Texas Denton, Texas 76203, United States
| | - Ted Hullar
- Department of Land, Air and Water Resources, University of California Davis Davis, California 95616-8627, United States
| | - Cort Anastasio
- Department of Land, Air and Water Resources, University of California Davis Davis, California 95616-8627, United States
| | - Davide Donadio
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| |
Collapse
|