1
|
Gensberger-Reigl S, Zenker HE. Detection of intact bovine milk proteins after simulated gastrointestinal infant digestion using UHPLC - HRMS. Food Chem 2025; 465:142034. [PMID: 39571429 DOI: 10.1016/j.foodchem.2024.142034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
This study demonstrates the development and application of an ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) method for the rapid and sensitive identification of intact bovine milk proteins following simulated gastrointestinal infant digestion. The new method enables the differentiation between partially hydrolysed/modified and fully intact proteins. In the raw milk, intact α-lactalbumin was visible on SDS - PAGE until the end of the gastrointestinal digestion, while it was not detected with UHPLC-HRMS. Analysis of both raw and heated milk samples revealed that the method is applicable to various milk types. Interestingly, heated milk showed additional signals in the mass spectrum, indicating non-enzymatic post-translational modifications. The relative abundance of these proteoforms could be followed along digestion. These findings highlight the versatility and sensitivity of UHPLC-HRMS in elucidating protein structures and modifications, providing valuable insights into how simulated digestion affects milk protein composition.
Collapse
Affiliation(s)
- Sabrina Gensberger-Reigl
- Chair of Food Chemistry, Department Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| | - Hannah E Zenker
- Chair of Food Chemistry, Department Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Suwareh O, Causeur D, Le Feunteun S, Jardin J, Briard-Bion V, Pezennec S, Nau F. Peptide bonds cleaved by pepsin are affected by the morphology of heat-induced ovalbumin aggregates. Food Chem 2024; 458:140260. [PMID: 38944927 DOI: 10.1016/j.foodchem.2024.140260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The study aimed to assess the extent to which protein aggregation, and even the modality of aggregation, can affect gastric digestion, down to the nature of the hydrolyzed peptide bonds. By controlling pH and ionic strength during heating, linear or spherical ovalbumin (OVA) aggregates were prepared, then digested with pepsin. Statistical analysis characterized the peptide bonds specifically hydrolyzed versus those not hydrolyzed for a given condition, based on a detailed description of all these bonds. Aggregation limits pepsin access to buried regions of native OVA, but some cleavage sites specific to aggregates reflect specific hydrolysis pathways due to the denaturation-aggregation process. Cleavage sites specific to linear aggregates indicate greater denaturation compared to spherical aggregates, consistent with theoretical models of heat-induced aggregation of OVA. Thus, the peptides released during the gastric phase may vary depending on the aggregation modality. Precisely tuned aggregation may therefore allow subtle control of the digestion process.
Collapse
Affiliation(s)
- Ousmane Suwareh
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - David Causeur
- IRMAR UMR6625, CNRS, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Steven Le Feunteun
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Julien Jardin
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | | | - Stéphane Pezennec
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Françoise Nau
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| |
Collapse
|
3
|
Chen X, Fan R, Wang X, Zhang L, Wang C, Hou Z, Li C, Liu L, He J. In vitro digestion and functional properties of bovine β-casein: A comparison between adults and infants. Food Res Int 2024; 194:114914. [PMID: 39232534 DOI: 10.1016/j.foodres.2024.114914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Gastrointestinal digestibility behavior, structural and functional characteristics of bovine β-casein (β-CN) were studied in vitro under infant and adult conditions. This direct comparison helps reveal the effects of different physiological stages on the digestive behavior of β-CN. Not only was the degree of hydrolysis (DH) of β-CN analyzed, but also the changes in its digestive morphology, microstructure, and secondary structure during digestion were explored in depth. Meanwhile, we focused on the physicochemical properties of β-CN digesta, including solubility, emulsifying and foaming properties, as well as their functional properties, such as antimicrobial and antioxidant activities. Key results showed that β-CN underwent more extensive hydrolysis in the adult digestion model, with approximately twice the DH compared to the infant model. The adult model exhibited faster digestion kinetics, less protein flocculation, and a more loosened secondary structure, indicating a more efficient digestion process. Notably, the digesta from the adult model displayed significantly improved solubility and emulsifying properties, and also enhanced antioxidant capacities, with significantly better inhibition of two common pathogenic bacteria than the infant model, and an average increase in the diameter of the inhibition zone of approximately 2 mm. These findings underscore the differential digestive behavior and functional potential of β-CN across physiological stages. This comprehensive assessment approach contributes to a more comprehensive insight into the digestive behavior of β-CN. Therefore, we conclude that producing products from unmodified β-CN may be more suitable for the adult population, and that the digesta in the adult model exhibit higher functional properties.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Rui Fan
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Xinyu Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Lina Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot 010080, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Zhanqun Hou
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot 010080, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Chun Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| | - Libo Liu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot 010080, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China.
| |
Collapse
|
4
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
5
|
Luz ABS, de Medeiros AF, de Medeiros GCBS, Piuvezam G, Passos TS, Morais AHDA. Experimental Protocols Used to Mimic Gastrointestinal Protein Digestion: A Systematic Review. Nutrients 2024; 16:2398. [PMID: 39125281 PMCID: PMC11314321 DOI: 10.3390/nu16152398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 08/12/2024] Open
Abstract
Bioactive peptides derived from native proteins modulate physiological processes in the metabolic pathways. Given that multiple protocols in the literature mimic the digestion of dietary components, gathering studies that use such models directed at protein digestion processes is critical. This systematic review aimed to gather evidence that adopted adequate experimental models to simulate human protein digestion. The databases searched were PubMed, Web of Science, ScienceDirect, Embase, Virtual Health Library, and Scopus. A total of 1985 articles were found, resulting in 20 eligible in vitro studies. The Office of Health Assessment and Translation was used to evaluate methodological quality. Seven studies used plant-based protein sources, twelve used animal protein sources, and one used both. The duration of the oral phase varied, although 60% of the studies employed a protein digestion period of 120 min. Amylase, pepsin, and pancreatin enzymes were utilized in 40% of the studies, with pH levels of 7, 3, and 7, respectively, during the oral, gastric, and intestinal phases. The INFOGEST harmonized static model was adopted by 65% of the studies; INFOGEST is the most effective model for simulating gastrointestinal protein processes in humans and can be used to answer several research questions because it describes experimental conditions close to the human physiological situation.
Collapse
Affiliation(s)
- Anna Beatriz Santana Luz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (A.B.S.L.); (A.F.d.M.)
- Center for Health Sciences, Federal University of Recôncavo da Bahia, Santo Antônio de Jesus 44430-622, BA, Brazil
| | - Amanda Fernandes de Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (A.B.S.L.); (A.F.d.M.)
| | - Gidyenne Christine Bandeira Silva de Medeiros
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (G.C.B.S.d.M.); (T.S.P.)
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Public Health, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Thaís Souza Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (G.C.B.S.d.M.); (T.S.P.)
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (A.B.S.L.); (A.F.d.M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (G.C.B.S.d.M.); (T.S.P.)
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
6
|
Mackie A. The role of food structure in gastric-emptying rate, absorption and metabolism. Proc Nutr Soc 2024; 83:35-41. [PMID: 37671658 DOI: 10.1017/s0029665123003609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The high levels of non-communicable diseases such as CVD and type 2 diabetes mellitus are linked to obesity and poor diet. This continuing emphasis on health in relation to food is proving a powerful driver for the development of cheap but palatable and more functional foods. However, the efficacy of such foods is often hard to prove in human subjects. Thus, a suite of tools has been developed including in silico and in vitro simulations and animal models. Although animal models offer physiologically relevant platforms for research, their use for experimentation is problematic for consumers. Thus, in vitro methods such as Infogest protocols have been developed to provide digestion endpoints or even an indication of the kinetics of digestion. These protocols have been validated for a range of food systems but they still miss the final absorption step. This review discusses the use of such in vitro models and what further steps need to be included to make the bioaccessibility determination more relevant to bioavailability and human health.
Collapse
Affiliation(s)
- Alan Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
7
|
Miltenburg J, Bastiaan-Net S, Hoppenbrouwers T, Wichers H, Hettinga K. Gastric clot formation and digestion of milk proteins in static in vitro infant gastric digestion models representing different ages. Food Chem 2024; 432:137209. [PMID: 37643515 DOI: 10.1016/j.foodchem.2023.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Gastric digestion conditions change during infancy from newborn towards more adult digestion conditions, which can change gastric digestion kinetics. However, how these changes in gastric digestion conditions during infancy affect milk protein digestion has not been investigated. Therefore, we aimed to investigate milk protein digestion with static in vitro gastric digestion models representing one-, three- and six-month-old infants. With increasing age, gastric clots and soluble proteins were digested more extensively, which may partly be attributed to the looser gastric clot structure. Larger differences with increasing age were found for heated than unheated milk proteins, which might be caused by the presence of denatured whey proteins. Taken together, these findings show that gastric milk protein digestion increases during infancy. These in vitro gastric digestion models could be used to study how milk protein digestion changes with infant age, which may aid in developing infant formulas for different age stages.
Collapse
Affiliation(s)
- Julie Miltenburg
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Tamara Hoppenbrouwers
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Harry Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Kasper Hettinga
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Koidl L, Gentile SA, Untersmayr E. Allergen Stability in Food Allergy: A Clinician's Perspective. Curr Allergy Asthma Rep 2023; 23:601-612. [PMID: 37665560 PMCID: PMC10506954 DOI: 10.1007/s11882-023-01107-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW The globally rising food allergy prevalence is associated with the urgent need for new disease prevention methods, efficient treatment, and reliable risk assessment methods for characterization of food allergens. Due to inter-individual variations in the digestive system, food allergens are degraded to a different extent in each person. Food processing also influences allergen digestion. RECENT FINDINGS In this review, we provide an overview of the digestive system with focus on relevance for food allergy. Main food proteins causing allergic reactions are evaluated, and the combined role of food processing and digestion for allergen stability is highlighted. Finally, clinical implications of this knowledge are discussed. Recent literature shows that allergen digestibility is dependent on food processing, digestive conditions, and food matrix. Digestion affects proteins allergenicity. It is currently not possible to predict the immunogenicity of allergens solely based on protein stability.
Collapse
Affiliation(s)
- Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Salvatore Alessio Gentile
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Guan Y, Wang Y, Pan C, Li L, Shi F, Wang Y, Chen M, Yang G, He G, Chang J, Li Y. The additive interactions between high-molecular-weight glutenin subunits and tannic acid improve the wheat quality. Food Res Int 2023; 168:112756. [PMID: 37120207 DOI: 10.1016/j.foodres.2023.112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Wheat gluten proteins, especially high-molecular-weight glutenin subunits (HMW-GS), are the main contributor to flour processing quality. Tannic acid (TA) consisting of a central glucose unit and ten gallic acid molecules is a phenolic acid that improves the processing quality. However, the underlying mechanism of TA's improvement remains largely unknown. Here, we showed that TA's improving effects on gluten aggregation, dough-mixing and bread-making properties were directly associated with the kinds of HMW-GS expressed in wheat seeds in HMW-GS near-isogenic lines (NILs). We established a biochemical framework, elucidated the additive effects of HMW-GS-TA interaction and discovered that TA cross-linked specifically with wheat glutenins but not gliadins, and reduced gluten surface hydrophobicity and SH content depending on the kinds of expressed HMW-GS in the wheat seeds. We also demonstrated that hydrogen bonds play an essential role in TA-HMW-GS interactions and improvement of wheat processing quality. Additionally, the effects of TA on the antioxidant capacity and on nutrient (protein and starch) digestibility were also investigated in the NILs of HMW-GS. TA increased antioxidant capacity but did not affect the digestion of starches and proteins. Our results revealed that TA more effectively strengthened wheat gluten in the presence of more HMW-GS kinds, highlighting TA's potential as an improver toward healthy and quality bread and demonstrating that manipulating hydrogen bonds was a previously overlooked approach to improve wheat quality.
Collapse
|
10
|
Wang K, Crevel RWR, Mills ENC. An in vitro protocol to characterise the resistance of food proteins to intestinal digestion. Food Chem Toxicol 2023; 173:113590. [PMID: 36584934 DOI: 10.1016/j.fct.2022.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
In vitro digestion tests provide data on the form in which dietary proteins maybe presented to the gut mucosal immune system, one of many strands of evidence used in allergenicity risk assessment. A 96-well plate format in vitro intestinal digestion protocol has been developed with a high and low enzyme activity test executed at pH 6.5 and 8.0. It was applied to the systematic analysis of test proteins (including six allergens and one non-allergenic comparator) which were either completely resistant to pepsinolysis or gave rise to large persistent fragments following in vitro gastric digestion. Digestion was monitored using SDS-PAGE and densitometry. Proteins resistant to pepsin were also resistant to intestinal digestion irrespective of the protocol applied and gave rise to large persistent digestion fragments. In contrast persistent fragments from pepsin digestion were readily digested. Bile salts enhanced the digestibility of two highly resistant proteins, lysozyme ad β-lactoglobulin, changing the rank order of protein digestibility. Intestinal digestion tests that include bile salts provide a more physiologically relevant system for future investigation into how digestion products may influence the balance between tolerance and sensitization - and hence contribute to future development of a more effective allergenicity risk assessment process.
Collapse
Affiliation(s)
- Kai Wang
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rene W R Crevel
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK; René Crevel Consulting Ltd, 3 Woodlands Close, Cople, Bedford, MK44 3UE, UK.
| | - E N Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK; School of Biosciences and Medicine, The University of Surrey, Guildford, UK.
| |
Collapse
|
11
|
Wang K, Liu D, Tao X, Zhang J, Huppertz T, Regenstein JM, Liu X, Zhou P. Decalcification strongly affects in vitro gastrointestinal digestion of bovine casein micelles under infant, adult and elderly conditions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Melchior S, Moretton M, Alongi M, Calligaris S, Cristina Nicoli M, Anese M. Comparison of protein in vitro digestibility under adult and elderly conditions: The case study of wheat, pea, rice, and whey proteins. Food Res Int 2023; 163:112147. [PMID: 36596099 DOI: 10.1016/j.foodres.2022.112147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
In this study an in vitro static digestion method mimicking the elderly gastrointestinal conditions was designed by adapting the physiological parameters described in the INFOGEST standardized static in vitro digestion protocol, i.e., pH, digestive phase duration, concentrations of enzymes and bile salts, to the aged GI transit. The digestibility of proteins from different sources (pea, rice, wheat, and milk whey) was then assessed. Protein digestive behaviour was monitored after gastric and intestinal phases by BCA assay and SDS-PAGE to assess protein hydrolysis both from a quantitative and a qualitative point of view. Digested samples were also analysed for physical characteristics in terms of particle size and zeta potential. Data acquired under elderly gastrointestinal conditions were compared to those obtained by using the INFOGEST protocol designed to study adult digestion. Results clearly showed that the elderly gastrointestinal conditions deeply affected proteolysis leading to a general reduction of protein digestibility in comparison to the adult model. The proteolysis extent depended on the protein source with whey and rice proteins showing about 20% reduction using the model mimicking the elderly gut, followed by pea (about 10% reduction) and wheat (about 4% reduction) proteins. The knowledge of protein digestibility under elderly gastrointestinal conditions generated in this study could be useful in the attempt to develop age-tailored products.
Collapse
Affiliation(s)
- Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Marilisa Alongi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Maria Cristina Nicoli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| |
Collapse
|
13
|
Picariello G, Siano F, Di Stasio L, Mamone G, Addeo F, Ferranti P. Structural properties of food proteins underlying stability or susceptibility to human gastrointestinal digestion. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Yang F, Ma X, Hu W, Xiong Z, Huang M, Wu Y, Meng X, Wu Z, Yang A, Li X, Chen H. Identification of immunoglobulin E epitopes on major allergens from dairy products after digestion and transportation in vitro. J Dairy Sci 2022; 105:9476-9487. [DOI: 10.3168/jds.2022-22287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
|
15
|
Akkerdaas JH, Cianferoni A, Islamovic E, Kough J, Ladics GS, McClain S, Poulsen LK, Silvanovich A, Pereira Mouriès L, van Ree R. Impact of Food Matrices on Digestibility of Allergens and Poorly Allergenic Homologs. FRONTIERS IN ALLERGY 2022; 3:909410. [PMID: 35769559 PMCID: PMC9234860 DOI: 10.3389/falgy.2022.909410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Protease resistance is considered a risk factor for allergenicity of proteins, although the correlation is low. It is nonetheless a part of the weight-of-evidence approach, proposed by Codex, for assessing the allergenicity risk of novel food proteins. Susceptibility of proteins to pepsin is commonly tested with purified protein in solution. Objective Food proteins are rarely consumed in purified form. Our aim was to evaluate the impact of experimental and endogenous food matrices on protease susceptibility of homologous protein pairs with different degrees of allergenicity. Methods Porcine and shrimp tropomyosin (ST) were subjected to sequential exposure to amylase, pepsin, and pancreatin in their respective endogenous matrix (pork tenderloin/boiled shrimp) and in three different experimental matrices (dessert mousse [DM], soy milk [SM], and chocolate bar [CB]). Digestion was monitored by immunoblotting using tropomyosin-specific antibodies. Recombinant peach and strawberry lipid transfer protein were biotinylated, spiked into both peach and strawberry fruit pulp, and subjected to the same sequential digestion protocol. Digestion was monitored by immunoblotting using streptavidin for detection. Results Chocolate bar, and to a lesser extent SM, had a clear protective effect against pepsin digestion of porcine tropomyosin (PT) and to a lesser extent of ST. Increased resistance was associated with increased protein content. Spiking experiments with bovine serum albumin (BSA) confirmed the protective effect of a protein-rich matrix. The two tropomyosins were both highly resistant to pepsin in their protein-rich and lean native food matrix. Pancreatin digestion remained rapid and complete, independent of the matrix. The fat-rich environment did not transfer protection against pepsin digestion. Spiking of recombinant peach and strawberry lipid transfer proteins into peach and strawberry pulp did not reveal any differential protective effect that could explain differences in allergenicity of both fruits. Conclusions Protein-rich food matrices delay pepsin digestion by saturating the protease. This effect is most apparent for proteins that are highly pepsin susceptible in solution. The inclusion of food matrices does not help in understanding why some proteins are strong primary sensitizers while homologs are very poor allergens. Although for induction of symptoms in food allergic patients (elicitation), a protein-rich food matrix that may contribute to increased risk, our results indicate that the inclusion of food matrices in the weight-of-evidence approach for estimating the potential risks of novel proteins to become allergens (sensitization), is most likely of very limited value.
Collapse
Affiliation(s)
- J. H. Akkerdaas
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - A. Cianferoni
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - E. Islamovic
- BASF Corporation, Morrisville, NC, United States
| | - J. Kough
- US EPA, Washington, DC, United States
| | - G. S. Ladics
- Dupont Nutrition and Biosciences, IFF, Wilmington, DE, United States
| | - S. McClain
- Syngenta Crop Protection, LLC, Greensboro, NC, United States
| | - L. K. Poulsen
- Copenhagen University Hospital at Gentofte, Copenhagen, Denmark
| | - A. Silvanovich
- Bayer U.S. Crop Science, Chesterfield, MO, United States
| | - L. Pereira Mouriès
- Health & Environmental Sciences Institute (HESI), Washington, DC, United States
| | - R. van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, Netherlands
- *Correspondence: R. van Ree
| |
Collapse
|
16
|
Pälchen K, Michels D, Duijsens D, Gwala S, Pallares Pallares A, Hendrickx M, Van Loey A, Grauwet T. In vitro protein and starch digestion kinetics of individual chickpea cells: from static to more complex in vitro digestion approaches. Food Funct 2021; 12:7787-7804. [PMID: 34231615 DOI: 10.1039/d1fo01123e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attention has been given to more (semi-)dynamic in vitro digestion approaches ascertaining the consequences of dynamic in vivo aspects on in vitro digestion kinetics. As these often come with time and economical constraints, evaluating the consequence of stepwise increasing the complexity of static in vitro approaches using easy-to-handle digestion set-ups has been the center of our interest. Starting from the INFOGEST static in vitro protocol, we studied the influence of static gastric pH versus gradual gastric pH change (pH 6.3 to pH 2.5 in 2 h) on macronutrient digestion in individual cotyledon cells derived from chickpeas. Little effect on small intestinal proteolysis was observed comparing the applied digestion conditions. Contrary, the implementation of a gradual gastric pH change, with and without the addition of salivary α-amylase, altered starch digestion kinetics rates, and extents by 25%. The evaluation of starch and protein digestion, being co-embedded in cotyledon cells, did not only confirm but account for the interdependent digestion behavior. The insights generated in this study demonstrate the possibility of using a hypothesis-based approach to introduce dynamic factors to in vitro models while sticking to simple and cost-efficient set-ups.
Collapse
Affiliation(s)
- Katharina Pälchen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dulko D, Staroń R, Krupa L, Rigby NM, Mackie AR, Gutkowski K, Wasik A, Macierzanka A. The bile salt content of human bile impacts on simulated intestinal proteolysis of β-lactoglobulin. Food Res Int 2021; 145:110413. [PMID: 34112416 DOI: 10.1016/j.foodres.2021.110413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/27/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal hydrolysis of food proteins has been portrayed in scientific literature to predominantly depend on the activity and specificity of proteolytic enzymes. Human bile has not been considered to facilitate proteolysis in the small intestine, but rather to assist in intestinal lipolysis. However, human bile can potentially influence proteins that are largely resistant to gastric digestion, and which are mainly hydrolysed after they have been transferred to the small intestine. We used purified and food-grade bovine milk β-lactoglobulin (βLg) to assess the impact of bile salts (BS) on the in vitro gastrointestinal digestion of this protein. Quantitative analysis showed that the proteolysis rate increased significantly with increasing BS concentration. The effect was consistent regardless of whether individual BS or real human bile samples, varying in BS concentrations, were used. The total BS content of bile was more important than its BS composition in facilitating the proteolysis of βlg. We also show that the impact of human bile observed during the digestion of purified βLg and βLg-rich whey protein isolate can be closely replicated by the use of individual BS mixed with phosphatidylcholine. This could validate simple BS/phosphatidylcholine mixtures as human-relevant substitutes of difficult-to-obtain human bile for in vitro proteolysis studies.
Collapse
Affiliation(s)
- Dorota Dulko
- Gdańsk University of Technology, Faculty of Chemistry, Department of Colloid and Lipid Science, Gabriela Narutowicza 11/12, 80-322 Gdańsk, Poland
| | - Robert Staroń
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1, Chopina 2, 35-055 Rzeszów, Poland
| | - Lukasz Krupa
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1, Chopina 2, 35-055 Rzeszów, Poland
| | - Neil M Rigby
- University of Leeds, School of Food Science and Nutrition, Leeds LS2 9JT, United Kingdom
| | - Alan R Mackie
- University of Leeds, School of Food Science and Nutrition, Leeds LS2 9JT, United Kingdom
| | - Krzysztof Gutkowski
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1, Chopina 2, 35-055 Rzeszów, Poland
| | - Andrzej Wasik
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Gabriela Narutowicza 11/12, 80-322 Gdańsk, Poland
| | - Adam Macierzanka
- Gdańsk University of Technology, Faculty of Chemistry, Department of Colloid and Lipid Science, Gabriela Narutowicza 11/12, 80-322 Gdańsk, Poland.
| |
Collapse
|
18
|
Rieder A, Afseth NK, Böcker U, Knutsen SH, Kirkhus B, Mæhre HK, Ballance S, Wubshet SG. Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chem 2021; 358:129830. [PMID: 33940301 DOI: 10.1016/j.foodchem.2021.129830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022]
Abstract
While the harmonized INFOGEST model provides a physiologically relevant platform for simulated digestion, it needs to be combined with adequate analytical methods to enable quantification and comparison of protein digestibility in different food matrices. We have shown that size exclusion chromatography (SEC) can be used to estimate the proportion of small peptides potentially available for uptake. Combined with determination of total dissolved protein, the % of small peptides per total protein was calculated as a physiologically relevant estimate of protein digestibility (DSEC). Values for DSEC differed for casein (87.6%), chicken mince (72.6%), heated pea protein concentrate (67.8%), bread (63%), beef entrecote (57.7%) and pea protein concentrate (57.8%). In contrast to existing methods (TCA soluble protein, free NH2-groups), the proposed SEC based method gives separate insight into the two fundamental processes during protein digestion (solubilization and break-down), while maintaining the ability to rank digestibility of very different food proteins.
Collapse
Affiliation(s)
- Anne Rieder
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1433 Ås, Norway.
| | - Nils Kristian Afseth
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1433 Ås, Norway
| | - Ulrike Böcker
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1433 Ås, Norway
| | - Svein Halvor Knutsen
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1433 Ås, Norway
| | - Bente Kirkhus
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1433 Ås, Norway
| | - Hanne K Mæhre
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1433 Ås, Norway
| | - Simon Ballance
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1433 Ås, Norway
| | - Sileshi Gizachew Wubshet
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1433 Ås, Norway
| |
Collapse
|
19
|
Herman RA, Bauman PA, Goodwin L, Islamovic E, Ma EH, Serrano H, Silvanovich A, Simmons AR, Song P, Tetteh AO, Wang R. Mass spectrometric analysis of digesta does not improve the allergenicity assessment of GM crops. Transgenic Res 2021; 30:283-288. [PMID: 33864193 PMCID: PMC8169501 DOI: 10.1007/s11248-021-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 11/23/2022]
Abstract
An investigation of the potential allergenicity of newly expressed proteins in genetically modified (GM) crops comprises part of the assessment of GM crop safety. However, allergenicity is not completely predictable from a definitive assay result or set of protein characteristics, and scientific opinions regarding the data that should be used to assess allergenicity are continuously evolving. Early studies supported a correlation between the stability of a protein exposed to digestive enzymes such as pepsin and the protein’s status as a potential allergen, but over time the conclusions of these earlier studies were not confirmed. Nonetheless, many regulatory authorities, including the European Food Safety Authority (EFSA), continue to require digestibility analyses as a component of GM crop risk assessments. Moreover, EFSA has recently investigated the use of mass spectrometry (MS), to make digestion assays more predictive of allergy risk, because it can detect and identify small undigested peptides. However, the utility of MS is questionable in this context, since known allergenic peptides are unlikely to exist in protein candidates intended for commercial development. These protein candidates are pre-screened by the same bioinformatics processes that are normally used to identify MS targets. Therefore, MS is not a standalone allergen identification method and also cannot be used to predict previously unknown allergenic epitopes. Thus, the suggested application of MS for analysis of digesta does not improve the poor predictive power of digestion assays in identifying allergenic risk.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Ma
- Syngenta Crop Protection, LLC., Research Triangle Park, NC, USA
| | | | | | | | - Ping Song
- Corteva Agriscience, Indianapolis, IN, USA
| | | | - Rong Wang
- Bayer, Crop Science Division, Chesterfield, MO, USA
| |
Collapse
|
20
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Dumont AF. Statement on in vitro protein digestibility tests in allergenicity and protein safety assessment of genetically modified plants. EFSA J 2021; 19:e06350. [PMID: 33473251 PMCID: PMC7801955 DOI: 10.2903/j.efsa.2021.6350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This statement supplements and updates the GMO Panel guidance document on allergenicity of genetically modified (GM) plants published in 2017. In that guidance document, the GMO Panel considered that additional investigations on in vitro protein digestibility were needed before providing any additional recommendations in the form of guidance to applicants. Thus, an interim phase was proposed to assess the utility of an enhanced in vitro digestion test, as compared to the classical pepsin resistance test. Historically, resistance to degradation by pepsin using the classical pepsin resistance test has been considered as additional information, in a weight-of-evidence approach, for the assessment of allergenicity and toxicity of newly expressed proteins in GM plants. However, more recent evidence does not support this test as a good predictor of allergenic potential for hazard. Furthermore, there is a need for more reliable systems to predict the fate of the proteins in the gastrointestinal tract and how they interact with the relevant human cells. Nevertheless, the classical pepsin resistance test can still provide some information on the physicochemical properties of novel proteins relating to their stability under acidic conditions. But other methods can be used to obtain data on protein's structural and/or functional integrity. It is acknowledged that the classical pepsin resistance test is embedded into international guidelines, e.g. Codex Alimentarius and Regulation (EU) No 503/2013. For future development, a deeper understanding of protein digestion in the gastrointestinal tract could enable the framing of more robust strategies for the safety assessment of proteins. Given the high complexity of the digestion and absorption process of dietary proteins, it is needed to clarify and identify the aspects that could be relevant to assess potential risks of allergenicity and toxicity of proteins. To this end, a series of research questions to be addressed are also formulated in this statement.
Collapse
|
21
|
Nielsen SD, Beverly RL, Underwood MA, Dallas DC. Differences and Similarities in the Peptide Profile of Preterm and Term Mother's Milk, and Preterm and Term Infant Gastric Samples. Nutrients 2020; 12:E2825. [PMID: 32942688 PMCID: PMC7551100 DOI: 10.3390/nu12092825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Our previous studies revealed that milk proteases begin to hydrolyze proteins in the mammary gland and that proteolytic digestion continues within the infant stomach. No research has measured how the release of milk peptides differs between the gastric aspirates of term and premature infants. This study examined the presence of milk peptides in milk and gastric samples from term and preterm infants using an Orbitrap Fusion Lumos mass spectrometer. Samples were collected from nine preterm-delivering and four term-delivering mother-infant pairs. Our study reveals an increased count and ion abundance of peptides and decreased peptide length from mother's milk to the infant stomach, confirming that additional break-down of the milk proteins occurred in both preterm and term infants' stomachs. Protein digestion occurred at a higher level in the gastric contents of term infants than in gastric contents of preterm infants. An amino acid cleavage site-based enzyme analysis suggested that the observed higher proteolysis in the term infants was due to higher pepsin/cathepsin D activity in the stomach. Additionally, there was a higher quantity of antimicrobial peptides in term infant gastric contents than in those of preterm infants, which could indicate that preterm infants benefit less from bioactive peptides in the gut.
Collapse
Affiliation(s)
- Søren D. Nielsen
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (S.D.N.); (R.L.B.)
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, 8200 Aarhus, Denmark
| | - Robert L. Beverly
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (S.D.N.); (R.L.B.)
| | - Mark A. Underwood
- Department of Pediatrics, University of California, Sacramento, CA 95817, USA;
| | - David C. Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (S.D.N.); (R.L.B.)
| |
Collapse
|
22
|
Zenker HE, Wichers HJ, Tomassen MMM, Boeren S, De Jong NW, Hettinga KA. Peptide Release after Simulated Infant In Vitro Digestion of Dry Heated Cow's Milk Protein and Transport of Potentially Immunoreactive Peptides across the Caco-2 Cell Monolayer. Nutrients 2020; 12:nu12082483. [PMID: 32824739 PMCID: PMC7468992 DOI: 10.3390/nu12082483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Dry heating of cow’s milk protein, as applied in the production of “baked milk”, facilitates the resolution of cow’s milk allergy symptoms upon digestion. The heating and glycation-induced changes of the protein structure can affect both digestibility and immunoreactivity. The immunological consequences may be due to changes in the peptide profile of the digested dry heated milk protein. Therefore, cow’s milk protein powder was heated at low temperature (60 °C) and high temperature (130 °C) and applied to simulated infant in vitro digestion. Digestion-derived peptides after 10 min and 60 min in the intestinal phase were measured using LC-MS/MS. Moreover, digests after 10 min intestinal digestion were applied to a Caco-2 cell monolayer. T-cell epitopes were analysed using prediction software, while specific immunoglobin E (sIgE) binding epitopes were identified based on the existing literature. The largest number of sIgE binding epitopes was found in unheated samples, while T-cell epitopes were equally represented in all samples. Transport of glycated peptide indicated a preference for glucosyl lysine and lactosyl-lysine-modified peptides, while transport of peptides containing epitope structures was limited. This showed that the release of immunoreactive peptides can be affected by the applied heating conditions; however, availability of peptides containing epitopes might be limited.
Collapse
Affiliation(s)
- Hannah E. Zenker
- Food Quality & Design Group, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
| | - Harry J. Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands; (H.J.W.); (M.M.M.T.)
- Laboratory of Food chemistry, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands
| | - Monic M. M. Tomassen
- Wageningen Food & Biobased Research, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands; (H.J.W.); (M.M.M.T.)
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research Centre, 6708 WE Wageningen, The Netherlands;
| | - Nicolette W. De Jong
- Internal Medicine, Department of Allergology & Clinical Immunology, Erasmus Medical Centre, 3000 CA Rotterdam, The Netherlands;
| | - Kasper A. Hettinga
- Food Quality & Design Group, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
- Correspondence:
| |
Collapse
|
23
|
Torcello-Gómez A, Dupont D, Jardin J, Briard-Bion V, Deglaire A, Risse K, Mechoulan E, Mackie A. Human gastrointestinal conditions affectin vitrodigestibility of peanut and bread proteins. Food Funct 2020; 11:6921-6932. [DOI: 10.1039/d0fo01451f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peanut and wheat proteins either isolated or within the food matrix were subjected to different staticin vitrodigestion models (infant, fed and fasted adult). Proteolysis differed across models.
Collapse
Affiliation(s)
| | | | | | | | | | - Kerstin Risse
- School of Food Science and Nutrition
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Elodie Mechoulan
- School of Food Science and Nutrition
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Alan Mackie
- School of Food Science and Nutrition
- University of Leeds
- Leeds LS2 9JT
- UK
| |
Collapse
|