1
|
El-ezz DA, Aldahmash W, Esatbeyoglu T, Afifi SM, Elbaset MA. Cilostazol Combats Lipopolysaccharide-Induced Hippocampal Injury in Rats: Role of AKT/GSK3 β/CREB Curbing Neuroinflammation. Adv Pharmacol Pharm Sci 2024; 2024:3465757. [PMID: 39364299 PMCID: PMC11449543 DOI: 10.1155/2024/3465757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024] Open
Abstract
Neuroinflammation is important in the pathophysiology of several degenerative brain disorders. This study looked at the potential neuroprotective benefits of cilostazol, a phosphodiesterase inhibitor, against LPS-induced hippocampus damage in rodents and the principal molecular involvement of AKT/GSK3β/CREB signaling pathways. Behavioral tests revealed that cilostazol successfully corrected LPS-induced neurobehavioral impairments. Furthermore, cilostazol therapy lowered hippocampal levels of amyloid beta 1-42 (Aβ1-42) and p-tau protein, both of which are critical pathological indicators of neurodegenerative disorders. Furthermore, cilostazol administration suppressed LPS-induced rises in hippocampus caspase-3 and NF-κB levels while elevating rat B-cell/lymphoma 2 (BCL2) and brain-derived neurotrophic factor (BDNF) levels, which are implicated in neuronal survival and synaptic plasticity. Cilostazol treatment also restored the decreased phosphorylation of protein kinase B (p-AKT) and reduced the elevated levels of phosphorylated glycogen synthase kinase-3 beta (p-GSK3β) and cAMP response element-binding protein (CREB) in the hippocampus of LPS-treated rats. Histopathological examination revealed that cilostazol ameliorated LPS-induced brain damage with reduced neuronal loss and gliosis. Immunohistochemistry analysis showed a decrease in Iba-1 expression, indicating a reduction in microglial activation in the cilostazol-treated group compared to the LPS group. The findings advocate that cilostazol exerts neuroprotective effects against LPS-induced hippocampal injury by modulating the AKT/GSK3β/CREB pathway and curbing neuroinflammation. Cilostazol may hold promise as a therapeutic agent for neuroinflammatory conditions associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Doaa Abou El-ezz
- Pharmacology and Toxicology DepartmentFaculty of PharmacyOctober University for Modern Sciences and Arts University, Giza 12556, Egypt
| | - Waleed Aldahmash
- Department of ZoologyCollege of ScienceKing Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food DevelopmentInstitute of Food and One HealthGottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany
| | - Sherif M. Afifi
- Department for Life Quality StudiesRimini CampusUniversity of Bologna, Corso d'Augusto 237, Rimini 47921, Italy
| | - Marawan Abd Elbaset
- Department of PharmacologyMedical Research and Clinical Studies InstituteNational Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Choe K, Park JS, Park HY, Tahir M, Park TJ, Kim MO. Lupeol protect against LPS-induced neuroinflammation and amyloid beta in adult mouse hippocampus. Front Nutr 2024; 11:1414696. [PMID: 39050141 PMCID: PMC11266137 DOI: 10.3389/fnut.2024.1414696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Neuroinflammation includes the activation of immune glial cells in the central nervous system, release pro-inflammatory cytokines, which disrupt normal neural function and contribute to various neurological disorders, including Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, and stroke. AD is characterized by various factors including amyloidogenesis, synaptic dysfunction, memory impairment and neuroinflammation. Lipopolysaccharide (LPS) constitutes a vital element of membrane of the gram-negative bacterial cell, triggering vigorous neuroinflammation and facilitating neurodegeneration. Lupeol, a naturally occurring pentacyclic triterpene, has demonstrated several pharmacological properties, notably its anti-inflammatory activity. In this study, we evaluated the anti-inflammatory and anti-Alzheimer activity of lupeol in lipopolysaccharide (LPS)-injected mice model. LPS (250ug/kg) was administered intraperitoneally to C57BL/6 N male mice for 1 week to induce neuroinflammation and cognitive impairment. For biochemical analysis, acetylcholinesterase (AChE) assay, western blotting and confocal microscopy were performed. AChE, western blot and immunofluorescence results showed that lupeol treatment (50 mg/kg) along with LPS administration significantly inhibited the LPS-induced activation of neuroinflammatory mediators and cytokines like nuclear factor (NF-κB), tumor necrosis factor (TNF-α), cyclooxygenase (COX-2) and interleukin (IL-1β). Furthermore, we found that LPS-induced systemic inflammation lead to Alzheimer's symptoms as LPS treatment enhances level of amyloid beta (Aβ), amyloid precursor protein (APP), Beta-site APP cleaving enzyme (BACE-1) and hyperphosphorylated Tau (p-Tau). Lupeol treatment reversed the LPS-induced elevated level of Aβ, APP, BACE-1 and p-Tau in the hippocampus, showing anti-Alzheimer's properties. It is also determined that lupeol prevented LPS-induced synaptic dysfunction via enhanced expression of pre-and post-synaptic markers like SNAP-23, synaptophysin and PSD-95. Overall, our study shows that lupeol prevents memory impairment and synaptic dysfunction via inhibition of neuroinflammatory processes. Hence, we suggest that lupeol might be a useful therapeutic agent in prevention of neuroinflammation-induced neurological disorders like AD.
Collapse
Affiliation(s)
- Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Muhammad Tahir
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, United Kingdom
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
- Alz-Dementia Korea Co., Jinju, Republic of Korea
| |
Collapse
|
3
|
Abdo Qaid EY, Abdullah Z, Zakaria R, Long I. Minocycline protects against lipopolysaccharide-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of the rat. Int J Neurosci 2024; 134:56-65. [PMID: 35638219 DOI: 10.1080/00207454.2022.2084092] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE/AIM Neuroinflammation and oxidative stress have been encountered in neurodegenerative diseases such as Alzheimer's disease (AD). However, the neuroprotective effects of minocycline against lipopolysaccharide (LPS)-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of rats are still elusive. The purpose of this study is to investigate the effects of minocycline and memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, on the microglia and astrocytes expression, as well as oxidative stress levels in the mPFC of LPS injected rats. MATERIALS AND METHODS Fifty adult Male Sprague Dawley rats were divided into five groups: control, LPS (5 mg/kg), LPS treated with minocycline (25 mg/kg), LPS treated with minocycline (50 mg/kg) and LPS treated with memantine (10 mg/kg). The immunohistochemistry and western blotting were used to analyse the expressions and densities of microglia marker (Iba-1) and astrocyte marker, (GFAP) while enzyme-linked immunosorbent assay (ELISA) was used to measure the protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels. RESULTS In comparison to the control group, the expression and density of Iba-1 and GFAP were significantly enhanced in the LPS group (p < 0.05). LPS group also exhibited significantly higher levels of PCO and MDA (p < 0.05) and significantly lower levels of CAT and SOD (p < 0.05) when compared to the control group. Both minocycline and memantine-treated LPS rats were able to protect against these effects. CONCLUSION Minocycline, like memantine treatment, reduces oxidative stress in the mPFC of LPS rats via inhibition of glial cells activation.
Collapse
Affiliation(s)
- Entesar Yaseen Abdo Qaid
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
- Faculty of Medicine and Health Sciences, Department of Histology, Taiz University, Taiz, Yemen
| | - Zuraidah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| |
Collapse
|
4
|
Gilani SJ, Bin Jumah MN, Fatima F, Al-Abbasi FA, Afzal M, Alzarea SI, Sayyed N, Nadeem MS, Kazmi I. Hibiscetin attenuates lipopolysaccharide-evoked memory impairment by inhibiting BDNF/caspase-3/NF-κB pathway in rodents. PeerJ 2024; 12:e16795. [PMID: 38313003 PMCID: PMC10838095 DOI: 10.7717/peerj.16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
This study explores the neuroprotective potential of hibiscetin concerning memory deficits induced by lipopolysaccharide (LPS) injection in rats. The aim of this study is to evaluate the effect of hibiscetin against LPS-injected memory deficits in rats. The behavioral paradigms were conducted to access LPS-induced memory deficits. Various biochemical parameters such as acetyl-cholinesterase activity, choline-acetyltransferase, antioxidant (superoxide dismutase, glutathione transferase, catalase), oxidative stress (malonaldehyde), and nitric oxide levels were examined. Furthermore, neuroinflammatory parameters such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and nuclear factor-kappa B expression and brain-derived neurotrophic factor as well as apoptosis marker i.e., caspase-3 were evaluated. The results demonstrated that the hibiscetin-treated group exhibited significant recovery in LPS-induced memory deficits in rats by using behavioral paradigms, biochemical parameters, antioxidant levels, oxidative stress, neuroinflammatory markers, and apoptosis markers. Recent research suggested that hibiscetin may serve as a promising neuroprotective agent in experimental animals and could offer an alternative in LPS-injected memory deficits in rodent models.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May Nasser Bin Jumah
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Riyadh, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, Uttar Pradesh, India
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Xie Q, Hu X, Zhao X, Xiang Z, Chen Q, Xie Z, Wang H, Zhao Y, Cheng X, Wang C. Effects and mechanism of extracts rich in phenylpropanoids-polyacetylenes and polysaccharides from Codonopsis Radix on improving scopolamine-induced memory impairment of mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117106. [PMID: 37652198 DOI: 10.1016/j.jep.2023.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a progressive developmental neurodegenerative disease that primarily develops in old age. Memory impairment is an important manifestation of AD. It has been demonstrated that inflammation and oxidative stress are important mediators in the development and progression of AD. Codonopsis Radix (CR) has a long history of consumption, exhibiting lots of beneficial health effects, including anti-ageing, antioxidant, and anti-inflammatory properties. However, studies on the effects of CR on scopolamine-induced amnesia have rarely been reported. AIM OF THE STUDY The aim of this study was to investigate the ameliorative effect of macromolecular portion (polysaccharides, POL) and small molecule portion (fine extract rich in phenylpropanoids-polyacetylenes, EPP) from CR on improving scopolamine-induced memory impairment and to elucidate the potential mechanism of action. MATERIALS AND METHODS C57BL/6 mice were pretreated with EPP (0.2, 0.4, and 0.6 g/kg), POL (0.3, 0.6, and 0.9 g/kg), and donepezil (5 mg/kg) by gavage for 7 days, followed by intraperitoneal injection of scopolamine (1 mg/kg) to induce memory impairment. The 16S rRNA gene sequencing, histopathological, western blotting, and biochemical analysis (various biochemical markers and protein expressions related to cholinergic system, oxidative stress, and neuroinflammation) were performed to further elucidate the mechanism of action. Moreover, the acetylcholinesterase (AChE) inhibitory activities of POL, EPP, and its main compounds tangshenoside I, lobetyol, lobetyolin, and lobetyolinin were evaluated. RESULTS Experiments have confirmed that both POL and EPP from CR could improve scopolamine-induced spatial learning memory deficits. Both of them could regulate cholinergic function by inhibiting AChE and activating choline acetyltransferase (ChAT) activities. They also could enhance antioxidant defense via increasing the activities of superoxide dismutase and glutathione peroxidase, and anti-inflammatory function through suppressing inflammatory factors (nitric oxide, TNF-α, and IL-6) and regulating gut flora. Besides, in vitro experiments demonstrated that four monomeric compounds and EPP, except POL, exhibited inhibition of AChE activity. CONCLUSION EPP and POL from CR exert a beneficial effect on learning and memory processes in mice with scopolamine-induced memory impairment. CR may be a promising medicine for preventing and improving learning memory.
Collapse
Affiliation(s)
- Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xianrun Hu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Qianping Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yonglin Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
6
|
Liu H, Inoue R, Koyanagi M, Hayashi SM, Nagaoka K. Potential Effects of Alpha-Glycosyl Isoquercitrin on Memory by Altering the Gut Microbiota-Blood-Brain Axis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15991-16002. [PMID: 37861708 DOI: 10.1021/acs.jafc.3c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Alpha-glycosyl isoquercitrin (AGIQ), composed of isoquercitrin and glycosylated quercetin, has multiple biological effects. Here, we further examined the influence of AGIQ on brain function and provided its potential mechanism. Male C57BL/6 mice were treated with 0, 0.005, and 0.05% AGIQ in drinking water for 4 weeks prior to behavioral testing. Behavior tests showed that 0.05% AGIQ treatment significantly improved learning and memory function without affecting emotion. In the hippocampus, the gene expression of antioxidative defense enzymes was upregulated after 0.05% AGIQ treatment. In contrast, AGIQ caused significant alterations in the microbial abundance of genera Akkermansia, Bifidobacterium, and Alistipes associated with memory function. Metabolomics analysis identified that taurine concentration was significantly increased in serum and hippocampus from AGIQ-treated mice. The correlation analysis suggested that elevated serum taurine levels were closely related to the abundance of Akkermansia, indicating the underlying crosstalk of gut microbiota and serum metabolites. In vitro fecal culture further demonstrated that AGIQ could increase the level of Akkermansia. Taurine could exert antioxidant activity in SH-SY5Y neuroblastoma cell lines in vitro. Finally, vancomycin-induced alterations of gut microbiota attenuated the taurine increases in the serum and the antioxidant gene level in the hippocampus by AGIQ. Taken together, it is likely that AGIQ could increase genus Akkermansia abundance and ultimately increase taurine levels in serum and hippocampus to improve learning and memory function, relying on the gut microbiota-blood-brain axis. Our results supply a new view for understanding effects of AGIQ on brain function.
Collapse
Affiliation(s)
- Hong Liu
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Setsunan University, Osaka 573-0101, Japan
| | | | - Shim-Mo Hayashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Division of Food Additives, National Institute of Health Sciences, Kawasaki 210-0821, Kanagawa, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
7
|
Qaid EYA, Abdullah Z, Zakaria R, Long I. Minocycline Protects Against Lipopolysaccharide-Induced Cognitive Impairment and Oxidative Stress: Possible Role of the CREB-BDNF Signaling Pathway. Neurochem Res 2022; 48:1480-1490. [PMID: 36509985 DOI: 10.1007/s11064-022-03842-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
The oxidative stress-induced dysregulation of the cyclic AMP response element-binding protein- brain-derived neurotrophic factor (CREB-BDNF) cascade has been linked to cognitive impairment in several studies. This study aimed to investigate the effect of minocycline on the levels of oxidative stress markers, CREB, and BDNF in lipopolysaccharide (LPS)-induced cognitive impairment. Fifty adult male Sprague Dawley rats were divided randomly into five groups. Group 1 was an untreated control group. Groups 2, 3, 4 and 5 were treated concurrently with LPS (5 mg/kg, i.p) once on day 5 and normal saline (0.7 ml/rat, i.p) or minocycline (25 and 50 mg/kg, i.p) or memantine (10 mg/kg, i.p) once daily from day 1 until day 14, respectively. From day 15 to day 22 of the experiment, Morris Water Maze (MWM) was used to evaluate learning and reference memory in rats. The levels of protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were determined by enzyme-linked immunosorbent assay (ELISA). CREB and BDNF expression and density were measured by immunohistochemistry and western blot analysis, respectively. LPS administration significantly increased escape latency to the hidden platform with decreased travelled distance, swimming speed, target crossings and time spent in the target quadrant. Besides, the hippocampal tissue of LPS rats showed increased levels of PCO and MDA, decreased levels of CAT and SOD, and reduced expression and density of BDNF and CREB. Treatment with minocycline reversed these effects in a dose-dependent manner, comparable to the effects of memantine. Both doses of minocycline treatment protect against LPS-induced cognitive impairment by reducing oxidative stress and upregulating the CREB-BDNF signalling pathway in the rat hippocampus.
Collapse
Affiliation(s)
- Entesar Yaseen Abdo Qaid
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.,Histology Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Zuraidah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Amraie E, Pouraboli I, Salehi H, Rajaei Z. Treadmill running and Levisticum Officinale extract protect against LPS-induced memory deficits by modulating neurogenesis, neuroinflammation and oxidative stress. Metab Brain Dis 2022; 38:999-1011. [PMID: 36478529 DOI: 10.1007/s11011-022-01140-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Neuroinflammation plays an essential role in the pathogenesis of Alzheimer's disease. The preventive effect of physical exercise on attenuating neuroinflammation has not been completely defined. Levisticum officinale is known as a medicinal plant with antioxidant and anti-inflammatory properties. The current study was designed to investigate the neuroprotective impacts of treadmill running and Levisticum officinale on lipopolysaccharide (LPS)-induced learning and memory impairments and neuroinflammation in rats. Male Wistar rats ran on a treadmill and/or were pretreated with Levisticum officinale extract at a dose of 100 mg/kg for a week. Then, rats received intraperitoneal injection of LPS at a dose of 1 mg/kg. Treadmill running and/or treatment of extract lasted three more weeks. Behavioral, molecular, biochemical and immunohistochemical assessments were carried out after the end of the experiment. LPS administration resulted in spatial learning and memory impairments along with increased mRNA expression of interleukin-6 and malondialdehyde levels, as well as decreased superoxide dismutase activity and neurogenesis in the hippocampus. Moreover, treadmill running for four weeks, alone and in combination with Levisticum officinale extract attenuated spatial learning and memory deficits, decreased the mRNA expression of interleukin-6 and malondialdehyde levels, and enhanced superoxide dismutase activity and neurogenesis in the hippocampus. In conclusion, the advantageous effects of running exercise and Levisticum officinale extract on LPS-induced memory impairments are possibly due to the antioxidant and anti-inflammatory activity and enhancing neurogenesis.
Collapse
Affiliation(s)
- Esmaeil Amraie
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iran Pouraboli
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Yang S, Zhu G. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr Neuropharmacol 2022; 20:1479-1497. [PMID: 34525922 PMCID: PMC9881092 DOI: 10.2174/1570159x19666210915122820] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoid with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in neuropsychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors, or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases, and learning and memory functions. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide a reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China,Address correspondence to this author at the Anhui University of Chinese Medicine, Meishan Road 103, Hefei 230038, China; E-mail:
| |
Collapse
|
10
|
Sokolik OP, Prozorova GO. Current view on the problem of treating fibrocystic breast disease in terms of herbal medicine. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.79286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Fibrocystic breast disease, commonly called fibrocystic breasts or fibrocystic change, is a benign (noncancerous) condition, which is the most common pathology in women of reproductive age. Treatment of fibrocystic breast disease and concomitant pathologies can involve using herbs.
Materials and Methods: To make an analysis of literary sources on the development of fibrocystic breast disease in the pathogenesis of diseases of the female reproductive system (clinical human (75%) and animal studies (25%)) were published in the period of 2017–2021.
Results and discussion: The diversity of plants in the world is a promising ground for therapeutic improvisation, allowing for an individual approach to each patient, but, most importantly, creates possibilities for maneuvering in the event of ineffectiveness of any means. In some situations, herbal medicine is not only possible or permissible, but strictly mandatory, and is essentially the only effective therapeutic method, which is relatively safe provided the correct selection of combinations and control by a doctor who applies a certain method of phytotherapy, especially given a duration of treatment. The need for a deeper study is long overdue for the pharmacological capabilities of various plant raw materials in the treatment of not only this pathology, but others as well.
Conclusion: The development of phytotherapy should be based primarily on scientific developments, but this area can not be considered the prerogative of only phytotherapists, as herbal medicines should be in the arsenal of doctors of all specialties.
Collapse
|
11
|
Rajaei Z, Amooheydari Z, Alaei H, Esmaeil N. Supplementation of carvacrol attenuates hippocampal tumor necrosis factor-alpha level, oxidative stress, and learning and memory dysfunction in lipopolysaccharide-exposed rats. Adv Biomed Res 2022; 11:33. [PMID: 35720215 PMCID: PMC9201230 DOI: 10.4103/abr.abr_194_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Carvacrol is a natural phenolic monoterpene with anti-inflammatory and antioxidant bioactivities. Neuroinflammatory and oxidative stress responses play a crucial role in the pathogenesis of Alzheimer's disease. The present study examined the effect of carvacrol on brain tumor necrosis factor-alpha (TNF-α) level and oxidative stress as well as spatial learning and memory performances in lipopolysaccharide (LPS)-exposed rats. Materials and Methods: The rats were treated with either carvacrol (25 and 50 mg/kg) or Tween 80 for 2 weeks. Thereafter, LPS (1 mg/kg) or saline was intraperitoneally administered on days 15–19, 2 h before Morris water maze task, and treatments with carvacrol or Tween 80 were performed 30 min prior to behavioral testing. The level of TNF-α, lipid peroxidation, and total thiol concentration were measured in the hippocampus and cerebral cortex at the end of the experiment. Results: It was found that LPS-exposed rats exhibited spatial learning and memory dysfunction, which was accompanied by increased TNF-α level and lipid peroxidation, and decreased total thiol concentration in the hippocampus and/or cortex. Moreover, treatment with carvacrol at a dose of 25 mg/kg attenuated learning and memory impairments, decreased TNF-α and lipid peroxidation level in the hippocampus and cortex, and increased total thiol concentration in the cortex. Conclusion: Carvacrol exerts neuroprotective effects against LPS-induced spatial memory deficits through attenuating hippocampal TNF-α level and oxidative stress in rats.
Collapse
|
12
|
Namgyal D, Ali S, Hussain MD, Kazi M, Ahmad A, Sarwat M. Curcumin Ameliorates the Cd-Induced Anxiety-like Behavior in Mice by Regulating Oxidative Stress and Neuro-Inflammatory Proteins in the Prefrontal Cortex Region of the Brain. Antioxidants (Basel) 2021; 10:antiox10111710. [PMID: 34829581 PMCID: PMC8614802 DOI: 10.3390/antiox10111710] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
Age-related neurodegenerative diseases and vascular dementia are major challenges to the modern health care system. Most neurodegenerative diseases are associated with impaired spatial working memory and anxiety-like behavior. Thus, it is important to understand the underlying cellular mechanisms of neurodegenerative diseases in different regions of the brain to develop an effective therapeutic approach. In our previous research paper, we have reported the ameliorative effect of curcumin in Cd-induced hippocampal neurodegeneration. However, recently many researchers had reported the important role of the prefrontal cortex in higher cognitive functions. Therefore, to look into the cellular mechanism of curcumin protection against Cd-induced prefrontal cortex neurotoxicity, we investigated spatial working memory, anxiety-like behavior and analyzed prefrontal cortex inflammatory markers (IL-6, IL-10, and TNFα), antioxidant enzymes (SOD, GSH, and CAT), and pro-oxidant MDA level. Further, we conducted histological studies of the prefrontal cortex in Swiss albino mice exposed to cadmium (2.5 mg/kg). We observed that curcumin treatment improved the spatial working memory and anxiety-like behavior of mice through reduction of prefrontal cortex neuroinflammation and oxidative stress as well as increasing the number of viable prefrontal cortex neuronal cells. Our result suggests that environmental heavy metal cadmium can induce behavioral impairment in mice through prefrontal cortex cellular inflammation and oxidative stress. We found that curcumin has a potential therapeutic property to mitigate these behavioral and biochemical impairments induced by cadmium.
Collapse
Affiliation(s)
- Dhondup Namgyal
- Amity Institute of Neuropsychology and Neuroscience, Amity University, Noida 201303, India;
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
| | - Sher Ali
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India;
| | - Muhammad Delwar Hussain
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, California Health Sciences University, 120 N. Clovis Avenue, Clovis, CA 93612, USA;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- Correspondence:
| |
Collapse
|