1
|
Zhu L, He J. Morin Ameliorates Myocardial Injury in Diabetic Rats via Modulation of Autophagy, Apoptosis, Inflammation, and Oxidative Stress. Diabetes Metab Syndr Obes 2024; 17:4867-4882. [PMID: 39742288 PMCID: PMC11687097 DOI: 10.2147/dmso.s476867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025] Open
Abstract
Background Morin is a flavonol with beneficial effects on diabetic-related injuries. However, the effect of morin on diabetic cardiomyopathy and its association with autophagy, apoptosis, inflammation, and oxidative stress remains unclear. The current study aimed to reveal the mechanisms underlying morin-mediated protection against cardiac failure in diabetic rats. Methods Diabetic cardiomyopathy in albino Wistar rats was induced by streptozotocin (STZ). After treatment with a dose of 25, 50, and 100 mg/kg/day orally for the next 60 days, autophagic (p62, LC3, and BECN1), apoptotic (BCL2, CASP-3, and CASP9), inflammatory (IL-1β, IL-6, TNF-α), and oxidative stress (CAT, SOD, and MDA) markers in protein and gene levels as well as cardiac function tests were measured. Results The findings revealed that long-term morin treatment improved weight gain, lipid and glycemic profile, hypertension, and cardiac hypertrophy and fibrosis in diabetic rats compared to controls (p-value<0.001). Moreover, the upregulation of BCL-2, LC3, and BECN1 along with the downregulation of p62, CASP-3, and CASP-9 revealed that morin suppressed apoptosis and promoted autophagy in the cardiac tissue of rats with diabetes (p-value<0.05). Additionally, the reduction in IL-1β, IL-6, TNF-α, and MDA levels and the increment of SOD and CAT activity suggested that morin decreased inflammation and apoptosis in the heart of the rat models of diabetes (p-value<0.01). Conclusion These results may highlight the potential properties of morin as a therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, People’s Republic of China
| | - Jizhong He
- Department of Cardiology, Yan’an People’s Hospital, Yan’an, 716000, People’s Republic of China
| |
Collapse
|
2
|
Bahramzadeh A, Samavarchi Tehrani S, Goodarzi G, Seyyedebrahimi S, Meshkani R. Combination therapy of metformin and morin attenuates insulin resistance, inflammation, and oxidative stress in skeletal muscle of high-fat diet-fed mice. Phytother Res 2024; 38:912-924. [PMID: 38091524 DOI: 10.1002/ptr.8086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 02/15/2024]
Abstract
Lipid accumulation, inflammation, and oxidative stress are the most important causes of muscle insulin resistance. The aim of this study was to investigate the single and combined treatment effects of metformin (MET) and morin (MOR) on lipid accumulation, inflammation, and oxidative stress in the skeletal muscle of mice fed a high-fat diet. The mice were supplemented with MET (230 mg/kg diet), MOR (100 mg/kg diet), and MET + MOR for 9 weeks. Our results revealed that single treatment with MET or MOR, and with a stronger effect of MET + MOR combined treatment, reduced body weight gain, improved glucose intolerance and enhanced Akt phosphorylation in the muscle tissue. In addition, plasma and muscle triglyceride levels were decreased after treatment with MET and MOR. The expression of genes involved in macrophage infiltration and polarization and pro-inflammatory cytokines showed that MET + MOR combined treatment, significantly reduced inflammation in the muscle. Furthermore, combined treatment of MET + MOR with greater efficacy than the single treatment improved several oxidative stress markers in the muscle. Importantly, combined treatment of MET and MOR could increase the expression of nuclear factor erythroid 2-related factor 2, the master regulator of the antioxidant response. These findings suggest that combination of MET with MOR might ameliorate insulin resistance, inflammation, and oxidative stress in the skeletal muscle of mice fed high-fat diet.
Collapse
Affiliation(s)
- Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Science, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - ShadiSadat Seyyedebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
4
|
Fang HY, Zhao XN, Zhang M, Ma YY, Huang JL, Zhou P. Beneficial effects of flavonoids on cardiovascular diseases by influencing NLRP3 inflammasome. Inflammopharmacology 2023:10.1007/s10787-023-01249-2. [PMID: 37261627 DOI: 10.1007/s10787-023-01249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of global mortality and have a high incidence rate worldwide. The function of inflammasomes in CVDs has received a lot of attention recently, and the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome may be a new target for the prevention and treatment of CVDs. Flavonoids, which are found in food and plant extracts, inhibited inflammation in CVDs by regulating the NLRP3 inflammasome. CB-Dock was used to investigate whether 34 flavonoids from natural products acted on NLRP3 inflammasome. In brief, the PDB format of NLRP3 was selected as a protein file, and 34 flavonoids in SDF format were selected as the ligand file, and then input to CB-Dock for molecular docking. The docking results showed that epigallocatechin-3-gallate (EGCG), amentoflavone, baicalin, scutellarin, vitexin, silibinin, and puerarin had good binding affinities to NLRP3, which could be used as NLRP3 inhibitors, and aid in the discovery of lead compounds for the design and development of CVDs.
Collapse
Affiliation(s)
- Hai-Yan Fang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xiao-Ni Zhao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Meng Zhang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Yao-Yao Ma
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jin-Ling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.
| |
Collapse
|
5
|
Chen J, Zeng X, Sun X, Zhou G, Xu X. A comparison of the impacts of different polysaccharides on the sono-physico-chemical consequences of ultrasonic-assisted modifications. ULTRASONICS SONOCHEMISTRY 2023; 96:106427. [PMID: 37149927 PMCID: PMC10192650 DOI: 10.1016/j.ultsonch.2023.106427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
This study aimed to examine the sono-physico-chemical effects of ultrasound (UND) and its impact on the conjugate rates of morin (MOI) following the addition of polysaccharides in various conditions. In comparison to the control group, the incorporation of quaternary ammonium chitosan decreased the rate of MOI conjugation by 17.38%, but the addition of locust bean gum enhanced the grafting rate by 29.89%. Notably, the highest degree of myofibrillar protein (MRN) unfolding (fluorescence intensity: 114435.50), the most stable state (-44.98 mV), and the greatest specific surface area (393.06 cm2/cm3) were observed in the UMP/LBG group. The outcomes of atomic force microscopy and scanning electron microscopy revealed that the inclusion of locust bean gum led to a different microscopic morphology than the other two polysaccharides, which may be the primary cause of the strongest sono-physico-chemical effects of the system. This work demonstrated that acoustic settings can be tuned based on the characteristics of polysaccharides to maximize the advantages of sono-physico-chemical impacts in UND-assisted MOI processing.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Sun
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Sunoqrot S, Alkurdi M, Al Bawab AQ, Hammad AM, Tayyem R, Abu Obeed A, Abufara M. Encapsulation of morin in lipid core/PLGA shell nanoparticles significantly enhances its anti-inflammatory activity and oral bioavailability. Saudi Pharm J 2023; 31:845-853. [PMID: 37228320 PMCID: PMC10203777 DOI: 10.1016/j.jsps.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/07/2023] [Indexed: 05/27/2023] Open
Abstract
Morin (3,5,7,2',4'-pentahydroxyflavone; MR) is a bioactive plant polyphenol whose therapeutic efficacy is hindered by its poor biopharmaceutical properties. The purpose of this study was to develop a nanoparticle (NP) formulation to enhance the bioactivity and oral bioavailability of MR. The nanoprecipitation technique was employed to encapsulate MR in lipid-cored poly(lactide-co-glycolide) (PLGA) NPs. The optimal NPs were about 200 nm in size with an almost neutral surface charge and a loading efficiency of 82%. The NPs exhibited sustained release of MR within 24 h. In vitro antioxidant assays showed that MR encapsulation did not affect its antioxidant activity. On the other hand, anti-inflammatory assays in lipopolysaccharide-stimulated macrophages revealed a superior anti-inflammatory activity of MR NPs compared to free MR. Furthermore, oral administration of MR NPs to mice at a single dose of 20 mg/kg MR achieved a 5.6-fold enhancement in bioavailability and a prolongation of plasma half-life from 0.13 to 0.98 h. The results of this study present a promising NP formulation for MR which can enhance its oral bioavailability and bioactivity for the treatment of different diseases such as inflammation.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Malak Alkurdi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | | | | | |
Collapse
|
7
|
De Gaetano F, Celesti C, Paladini G, Venuti V, Cristiano MC, Paolino D, Iannazzo D, Strano V, Gueli AM, Tommasini S, Ventura CA, Stancanelli R. Solid Lipid Nanoparticles Containing Morin: Preparation, Characterization, and Ex Vivo Permeation Studies. Pharmaceutics 2023; 15:1605. [PMID: 37376054 DOI: 10.3390/pharmaceutics15061605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, bioactive compounds have been the focus of much interest in scientific research, due to their low toxicity and extraordinary properties. However, they possess poor solubility, low chemical stability, and unsustainable bioavailability. New drug delivery systems, and among them solid lipid nanoparticles (SLNs), could minimize these drawbacks. In this work, morin (MRN)-loaded SLNs (MRN-SLNs) were prepared using a solvent emulsification/diffusion method, using two different lipids, Compritol® 888 ATO (COM) or Phospholipon® 80H (PHO). SLNs were investigated for their physical-chemical, morphological, and technological (encapsulation parameters and in vitro release) properties. We obtained spherical and non-aggregated nanoparticles with hydrodynamic radii ranging from 60 to 70 nm and negative zeta potentials (about -30 mV and -22 mV for MRN-SLNs-COM and MRN-SLNs-PHO, respectively). The interaction of MRN with the lipids was demonstrated via μ-Raman spectroscopy, X-ray diffraction, and DSC analysis. High encapsulation efficiency was obtained for all formulations (about 99%, w/w), particularly for the SLNs prepared starting from a 10% (w/w) theoretical MRN amount. In vitro release studies showed that about 60% of MRN was released within 24 h and there was a subsequent sustained release within 10 days. Finally, ex vivo permeation studies with excised bovine nasal mucosa demonstrated the ability of SLNs to act as a penetration enhancer for MRN due to the intimate contact and interaction of the carrier with the mucosa.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Giuseppe Paladini
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Vincenza Strano
- National Council of Research, Institute of Microelectronics and Microsystems (CNR-IMM), University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Anna M Gueli
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Silvana Tommasini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosanna Stancanelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
8
|
Nirmala C, Sridevi M, Aishwarya A, Perara R, Sathiyanarayanan Y. Pharmacological Prospects of Morin Conjugated Selenium Nanoparticles-Evaluation of Antimicrobial, Antioxidant, Thrombolytic, and Anticancer Activities. BIONANOSCIENCE 2023; 13:1-14. [PMID: 37361102 PMCID: PMC10169122 DOI: 10.1007/s12668-023-01116-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Abstract Selenium nanoparticles (SeNPs) have gained wide importance in the scientific community and have emerged as an optimistic therapeutic carrier agent for targeted drug delivery. In the present study, the effectiveness of nano selenium conjugated with Morin (Ba-SeNp-Mo) produced from endophytic bacteria Bacillus endophyticus reported in our earlier research was tested against various Gram-positive, Gram-negative bacterial pathogens and fungal pathogens that showed good zone of inhibition against all selected pathogens. Antioxidant activities of these NPs were studied by 1, 1-diphenyl-2- picrylhydrazyl (DPPH), 2,2'-Azino-bis-3-ethylbenzothiozoline-6-sulfonic acid (ABTS), hydrogen peroxide (H2O2), superoxide (O2-), and nitric oxide (NO) radical scavenging assays that exhibited dose-dependent free radical scavenging activity with IC50 values 6.92 ± 1.0, 16.85 ± 1.39, 31.60 ± 1.36, 18.87 ± 1.46, and 6.95 ± 1.27 μg/mL. The efficiency of DNA cleavage and thrombolytic activity of Ba-SeNp-Mo were also studied. The antiproliferative effect of Ba-SeNp-Mo was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in COLON-26 cell lines that resulted in IC50 value of 63.11 μg/mL. Further increased intracellular reactive oxygen species (ROS) levels up to 2.03 and significant early, late and necrotic cells were also observed in AO/EtBr assay. CASPASE 3 expression was upregulated to 1.22 (40 μg/mL) and 1.85 (80 μg/mL) fold. Thus, the current investigation suggested that the Ba-SeNp-Mo has offered remarkable pharmacological activity. Graphical Abstract
Collapse
Affiliation(s)
- C. Nirmala
- Department of Biotechnology, Paavai Engineering College, Paavai Institutions, Namakkal, Tamilnadu India
| | - M. Sridevi
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - A. Aishwarya
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - Richard Perara
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - Y. Sathiyanarayanan
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| |
Collapse
|
9
|
Mahmood T, Sarfraz RM, Ismail A, Ali M, Khan AR. Pharmaceutical Methods for Enhancing the Dissolution of Poorly Water-Soluble Drugs. Assay Drug Dev Technol 2023; 21:65-79. [PMID: 36917562 DOI: 10.1089/adt.2022.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Low water solubility is the main hindrance in the growth of pharmaceutical industry. Approximately 90% of newer molecules under investigation for drugs and 40% of novel drugs have been reported to have low water solubility. The key and thought-provoking task for the formulation scientists is the development of novel techniques to overcome the solubility-related issues of these drugs. The main intention of present review is to depict the conventional and novel strategies to overcome the solubility-related problems of Biopharmaceutical Classification System Class-II drugs. More than 100 articles published in the last 5 years were reviewed to have a look at the strategies used for solubility enhancement. pH modification, salt forms, amorphous forms, surfactant solubilization, cosolvency, solid dispersions, inclusion complexation, polymeric micelles, crystals, size reduction, nanonization, proliposomes, liposomes, solid lipid nanoparticles, microemulsions, and self-emulsifying drug delivery systems are the various techniques to yield better bioavailability of poorly soluble drugs. The selection of solubility enhancement technique is based on the dosage form and physiochemical characteristics of drug molecules.
Collapse
Affiliation(s)
- Tahir Mahmood
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Rai M Sarfraz
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Asmara Ismail
- Specialized Healthcare and Medical Education Department, Government of Punjab, Lahore, Pakistan
| | - Muhammad Ali
- Specialized Healthcare and Medical Education Department, Government of Punjab, Lahore, Pakistan
| | - Abdur Rauf Khan
- Specialized Healthcare and Medical Education Department, Government of Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
11
|
Ulla A, Ozaki K, Rahman MM, Nakao R, Uchida T, Maru I, Mawatari K, Fukawa T, Kanayama HO, Sakakibara I, Hirasaka K, Nikawa T. Morin improves dexamethasone-induced muscle atrophy by modulating atrophy-related genes and oxidative stress in female mice. Biosci Biotechnol Biochem 2022; 86:1448-1458. [PMID: 35977398 DOI: 10.1093/bbb/zbac140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 11/12/2022]
Abstract
This study investigated the effect of morin, a flavonoid, on dexamethasone-induced muscle atrophy in C57BL/6J female mice. Dexamethasone (10 mg/kg body weight) for 10 days significantly reduced body weight, gastrocnemius and tibialis anterior muscle mass, and muscle protein in mice. Dexamethasone significantly upregulated muscle atrophy-associated ubiquitin ligases, including atrogin-1 and MuRF-1, and the upstream transcription factors FoxO3a and Klf15. Additionally, dexamethasone significantly induced the expression of oxidative stress-sensitive ubiquitin ligase Cbl-b and the accumulation of the oxidative stress markers malondialdehyde and advanced protein oxidation products in both the plasma and skeletal muscle samples. Intriguingly, morin treatment (20 mg/kg body weight) for 17 days effectively attenuated the loss of muscle mass and muscle protein and suppressed the expression of ubiquitin ligases while reducing the expression of upstream transcriptional factors. Therefore, morin might act as a potential therapeutic agent to attenuate muscle atrophy by modulating atrophy inducing genes and preventing oxidative stress.
Collapse
Affiliation(s)
- Anayt Ulla
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Kanae Ozaki
- Bizen Chemical Co. Ltd., Okayama, 709-0716, Japan
| | - Md Mizanur Rahman
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Isafumi Maru
- Bizen Chemical Co. Ltd., Okayama, 709-0716, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoya Fukawa
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiro-Omi Kanayama
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuya Hirasaka
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
12
|
Morin offsets PTZ-induced neuronal degeneration and cognitive decrements in rats: The modulation of TNF-α/TNFR-1/RIPK1,3/MLKL/PGAM5/Drp-1, IL-6/JAK2/STAT3/GFAP and Keap-1/Nrf-2/HO-1 trajectories. Eur J Pharmacol 2022; 931:175213. [PMID: 35981604 DOI: 10.1016/j.ejphar.2022.175213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Morin is a bioactive flavonoid with prominent neuroprotective potentials, however, its impact on epilepsy-provoked cognitive dysregulations has not been revealed. Hence, the present investigation aims to divulge the potential anticonvulsant/neuroprotective effects of morin in rats using a pentylenetetrazole (PTZ)-induced kindling model with an emphasis on the possible signaling trajectories involved. Kindling was induced using a sub-convulsive dose of PTZ (35 mg/kg, i.p.), once every other day for 25 days (12 injections). The expression of targeted biomarkers and molecular signals were examined in hippocampal tissues by ELISA, Western blotting, immunohistochemistry, and histopathology. Contrary to PTZ effects, administration of morin (10 mg/kg, i.p., from day 15 of PTZ injection to the end of the experiment) significantly reduced the severity of seizures coupled with a delay in kindling acquisition. It also preserved hippocampal neurons, and diminished astrogliosis to counteract cognitive deficits, exhibited by the enhanced performance in MWM and PA tests. These favorable impacts of morin were mediated via the abrogation of the PTZ-induced necroptotic changes and mitochondrial fragmentation proven by the suppression of p-RIPK-1/p-RIPK-3/p-MLKL and PGAM5/Drp-1 cues alongside the enhancement of caspase-8. Besides, morin inhibited the inflammatory cascade documented by the attenuation of the pro-convulsant receptor/cytokines TNFR-1, TNF-α, I L-1β, and IL-6 and the marked reduction of hippocampal IL-6/p-JAK2/p-STAT3/GFAP cue. In tandem, morin signified its anti-oxidant capacity by lowering the hippocampal contents of MDA, NOX-1, and Keap-1 with the restoration of the impaired Nrf-2/HO-1 pathway. Together, these versatile neuro-modulatory effects highlight the promising role of morin in the management of epilepsy.
Collapse
|
13
|
Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022; 11:foods11152189. [PMID: 35892774 PMCID: PMC9330871 DOI: 10.3390/foods11152189] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Plant polyphenols have attracted considerable attention because of their key roles in preventing many diseases, including high blood sugar, high cholesterol, and cancer. A variety of functional foods have been designed and developed with plant polyphenols as the main active ingredients. Polyphenols mainly come from vegetables and fruits and can generally be divided according to their structure into flavonoids, astragalus, phenolic acids, and lignans. Polyphenols are a group of plant-derived functional food ingredients with different molecular structures and various biological activities including antioxidant, anti-inflammatory, and anticancer properties. However, many polyphenolic compounds have low oral bioavailability, which limits the application of polyphenols in nutraceuticals. Fortunately, green bio-based nanocarriers are well suited for encapsulating, protecting, and delivering polyphenols, thereby improving their bioavailability. In this paper, the health benefits of plant polyphenols in the prevention of various diseases are summarized, with a review of the research progress into bio-based nanocarriers for the improvement of the oral bioavailability of polyphenols. Polyphenols have great potential for application as key formulations in health and nutrition products. In the future, the development of food-grade delivery carriers for the encapsulation and delivery of polyphenolic compounds could well solve the limitations of poor water solubility and low bioavailability of polyphenols for practical applications.
Collapse
|
14
|
Manzoor MF, Hussain A, Tazeddinova D, Abylgazinova A, Xu B. Assessing the Nutritional-Value-Based Therapeutic Potentials and Non-Destructive Approaches for Mulberry Fruit Assessment: An Overview. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6531483. [PMID: 35371246 PMCID: PMC8970939 DOI: 10.1155/2022/6531483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 01/22/2023]
Abstract
Among different fruits, mulberry is the most highlighted natural gift in its superior nutritional and bioactive composition, indispensable for continuing a healthy life. It also acts as a hepatoprotective immunostimulator and improves vision, anti-microbial, anti-cancer agent, anti-stress activity, atherosclerosis, neuroprotective functions, and anti-obesity action. The mulberry fruits also help reduce neurological disorders and mental illness. The main reason for that is the therapeutic potentials present in the nutritional components of the mulberry fruit. The available methods for assessing mulberry fruits are mainly chromatographic based, which are destructive and possess many limitations. However, recently some non-invasive techniques, including chlorophyll fluorescence, image processing, and hyperspectral imaging, were employed to detect various mulberry fruit attributes. The present review attempts to collect and explore available information regarding the nutritional and medicinal importance of mulberry fruit. Besides, non-destructive methods established for the fruit are also elaborated. This work helps encourage many more research works to dug out more hidden information about the essential nutrition of mulberry that can be helpful to resolve many mental-illness-related issues.
Collapse
Affiliation(s)
| | - Abid Hussain
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit, Pakistan
| | - Diana Tazeddinova
- Department of Technology and Catering Organization, South Ural State University, Chelyabinsk, Russia
- Higher School of Technologies of Food and Processing Productions, Zhangir Khan West Kazakhstan Agrarian Technical University, Uralsk, Kazakhstan
| | - Aizhan Abylgazinova
- Higher School of Technologies of Food and Processing Productions, Zhangir Khan West Kazakhstan Agrarian Technical University, Uralsk, Kazakhstan
- Scientific-Production Center of Livestock and Veterinary Medicine, Nur-Sultan, Kazakhstan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Zou F, Li X, Yang R, Zhang R, Zhao X. Effects and underlying mechanisms of food polyphenols in treating gouty arthritis: A review on nutritional intake and joint health. J Food Biochem 2022; 46:e14072. [PMID: 34997623 DOI: 10.1111/jfbc.14072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Gouty arthritis, one of the most severe and common forms of arthritis, is characterized by monosodium urate crystal deposition in joints and surrounding tissues. Epidemiological evidence indicates that gouty arthritis incidence is sharply rising globally. Polyphenols are found in many foods and are secondary metabolites in plant foods. The anti-inflammatory and antioxidant effects of food polyphenols have been extensively studied in many inflammatory chronic diseases. Research has suggested that many food polyphenols have excellent anti-gouty arthritis effects. The mechanisms mainly include (a) inhibiting xanthine oxidase activity; (b) reducing the levels of inflammatory cytokines and chemokines; (c) inhibiting the activation of signaling pathways and the NLRP3 inflammasome; and (d) reducing oxidative stress. This paper reviews the research progress and pathogenesis of gouty arthritis and introduces the mechanisms of food polyphenols in treating gouty arthritis, which aims to explore the potential of functional foods in the treatment of gouty arthritis. PRACTICAL APPLICATIONS: The incidence rate of gouty arthritis has increased sharply worldwide, which has seriously affected people's quality of life. According to the current research progress, food polyphenols alleviate gouty arthritis through anti-inflammatory and antioxidant effects. This paper reviews the research progress and molecular pathogenesis of gouty arthritis and introduces the mechanisms of food-derived polyphenols in the treatment of gouty arthritis, which is helpful to the prevention and treatment of gouty arthritis.
Collapse
Affiliation(s)
- Fengmao Zou
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofang Li
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Yang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruowen Zhang
- Department of Research and Development, Jiahehongsheng (Shenzhen) Health Industry Group, Shenzhen, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
16
|
Guo J, Lu W, Meng Y, Liu Y, Dong C, Shuang S. The highly sensitive “turn-on” detection of morin using fluorescent nitrogen-doped carbon dots. Analyst 2022; 147:5455-5461. [DOI: 10.1039/d2an01646j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Graphic diagram of the synthesis of the N-CDs and the N-CDs based fluorescent sensor for the determination of morin.
Collapse
Affiliation(s)
- Jianhua Guo
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenjing Lu
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yating Meng
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
17
|
Mottaghi S, Abbaszadeh H. The anticarcinogenic and anticancer effects of the dietary flavonoid, morin: Current status, challenges, and future perspectives. Phytother Res 2021; 35:6843-6861. [PMID: 34498311 DOI: 10.1002/ptr.7270] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Flavonoids constitute one of the most important classes of polyphenols, which have been found to have a wide range of biological activities such as anticancer effects. A large body of evidence demonstrates that morin as a pleiotropic dietary flavonoid possesses potent anticarcinogenic and anticancer activities with minimal toxicity against normal cells. The present review comprehensively elaborates the molecular mechanisms underlying antitumorigenic and anticancer effects of morin. Morin exerts its anticarcinogenic effects through multiple cancer preventive mechanisms, including reduction of oxidative stress, activation of phase II enzymes, induction of apoptosis, attenuation of inflammatory mediators, and downregulation of p-Akt and NF-κB expression. A variety of molecular targets and signaling pathways such as apoptosis, cell cycle, reactive oxygen species (ROS), matrix metalloproteinases (MMPs), epithelial-mesenchymal transition (EMT), and microRNAs (miRNAs) as well as signal transducer and activator of transcription 3 (STAT3), NF-κB, phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK), and Hippo pathways have been found to be involved in the anticancer effects of morin. In the adjuvant therapy, morin has been shown to have synergistic anticancer effects with several chemotherapeutic drugs. The findings of this review indicate that morin can act as a promising chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Rosenzweig T, Sampson SR. Activation of Insulin Signaling by Botanical Products. Int J Mol Sci 2021; 22:ijms22084193. [PMID: 33919569 PMCID: PMC8073144 DOI: 10.3390/ijms22084193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is a worldwide health problem, ranked as one of the leading causes for severe morbidity and premature mortality in modern society. Management of blood glucose is of major importance in order to limit the severe outcomes of the disease. However, despite the impressive success in the development of new antidiabetic drugs, almost no progress has been achieved with regard to the development of novel insulin-sensitizing agents. As insulin resistance is the most eminent factor in the patho-etiology of T2D, it is not surprising that an alarming number of patients still fail to meet glycemic goals. Owing to its wealth of chemical structures, the plant kingdom is considered as an inventory of compounds exerting various bioactivities, which might be used as a basis for the development of novel medications for various pathologies. Antidiabetic activity is found in over 400 plant species, and is attributable to varying mechanisms of action. Nevertheless, relatively limited evidence exists regarding phytochemicals directly activating insulin signaling, which is the focus of this review. Here, we will list plants and phytochemicals that have been found to improve insulin sensitivity by activation of the insulin signaling cascade, and will describe the active constituents and their mechanism of action.
Collapse
Affiliation(s)
- Tovit Rosenzweig
- Departments of Molecular Biology and Nutritional Studies, Ariel University, Ariel 4077625, Israel
- Correspondence:
| | - Sanford R. Sampson
- Department of Molecular Cell Biology, Rehovot and Faculty of Life Sciences, Weizmann Institute of Science, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| |
Collapse
|
19
|
The subgroup of 2'-hydroxy-flavonoids: Molecular diversity, mechanism of action, and anticancer properties. Bioorg Med Chem 2021; 32:116001. [PMID: 33444847 DOI: 10.1016/j.bmc.2021.116001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are abundant in nature, structurally very diversified and largely investigated. However, the subgroup of 2'-hydroxyflavonoids is much less known and not frequently studied. The present review identifies the major naturally-occurring and synthetic 2'-hydroxyflavonoid derivatives and discusses their structural characteristics and biological properties, with a focus on anticancer activities. The pharmacological properties of 2'-hydroxyflavone (2'-HF) and 2'-hydroxyflavanone (2'-HFa) are detailed. Upon binding to the Ral-interacting protein Rlip implicated in the transport of glutathione conjugates, 2'-HFa inhibits tumor cell proliferation and restrict tumor growth, in particular in breast cancer models. Among the synthetic derivatives, the characteristics of the anticancer product 2D08 (2',3',4'-trihydroxy flavone) are detailed to shed light on the molecular mechanism of action of this compound, as a regulator of protein SUMOylation. Inhibition of protein SUMOylation by 2D08 blocks cancer cell migration and invasion, and the compound greatly enhances the anticancer effects of conventional cytotoxic drugs like etoposide. The structural role of the 2'-hydroxyl group on the phenyl C-ring of the flavonoid is discussed, notably the capacity to engage intramolecular H-bonding interactions with the O1 atom on the B-ring of the chromone unit (or the oxygen of a 3-OH group when it is presents). The 2'-hydroxyl group of flavonoid appears as a regulator of the conformational freedom between the bicyclic A-B unit and the appended phenyl C-ring, favoring the planarity of the molecule. It is an essential group accounting for the biological properties of 2'-HF, 2'-HFa and structurally related compounds. This review shed light on 2'-hydroxyflavonoids to encourage their use and chemical development.
Collapse
|