1
|
Zhang Z, Guo Q, Yang Z, Sun Y, Jiang S, He Y, Li J, Zhang J. Bifidobacterium adolescentis-derived nicotinic acid improves host skeletal muscle mitochondrial function to ameliorate sarcopenia. Cell Rep 2025; 44:115265. [PMID: 39908139 DOI: 10.1016/j.celrep.2025.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Sarcopenia significantly diminishes quality of life and increases mortality risk in older adults. While the connection between the gut microbiome and muscle health is recognized, the underlying mechanisms are poorly understood. In this study, shotgun metagenomics revealed that Bifidobacterium adolescentis is notably depleted in individuals with sarcopenia, correlating with reduced muscle mass and function. This finding was validated in aged mice. Metabolomics analysis identified nicotinic acid as a key metabolite produced by B. adolescentis, linked to improvements in muscle mass and functionality in individuals with sarcopenia. Mechanistically, nicotinic acid restores nicotinamide adenine dinucleotide (NAD+) levels in muscle, inhibits the FoxO3/Atrogin-1/Murf-1 axis, and promotes satellite cell proliferation, reducing muscle atrophy. Additionally, NAD+ activation enhances the silent-information-regulator 1 (SIRT1)/peroxisome-proliferator-activated-receptor-γ-coactivator 1-alpha (PGC-1α) axis, stimulating mitochondrial biogenesis and promoting oxidative metabolism in slow-twitch fibers, ultimately improving muscle function. Our findings suggest that B. adolescentis-derived nicotinic acid could be a promising therapeutic strategy for individuals with sarcopenia.
Collapse
Affiliation(s)
- Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Quan Guo
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Zhihan Yang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yukai Sun
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yangli He
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Jiahe Li
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
2
|
Di Lorenzo E, Romano F, Ciriaco L, Iaccarino N, Izzo L, Randazzo A, Musto P, Di Maio E. Periodic cooking of eggs. COMMUNICATIONS ENGINEERING 2025; 4:5. [PMID: 39915675 PMCID: PMC11802719 DOI: 10.1038/s44172-024-00334-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Egg cooks are challenged by the two-phase structure: albumen and yolk require two cooking temperatures. Separation or a compromise temperature to the detriment of food safety or taste preference are the options. In the present article, we find that it is possible to cook albumen and yolk at two temperatures without separation by using periodic boundary conditions in the energy transport problem. Through mathematical modeling and subsequent simulation, we are able to design the novel cooking method, namely periodic cooking. Comparison with established egg cooking procedures through a plethora of characterization techniques, including Sensory Analysis, Texture Profile Analysis and FT-IR spectroscopy, confirms the different cooking extents and the different variations in protein denaturation with the novel approach. The method not only optimizes egg texture and nutrients, but also holds promise for innovative culinary applications and materials treatment.
Collapse
Affiliation(s)
- Emilia Di Lorenzo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, P.le Tecchio, 80, Naples, 80125, Italy
- foamlab, University of Naples Federico II, P.le Tecchio, 80, Naples, 80125, Italy
| | - Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Lidia Ciriaco
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Pellegrino Musto
- Institute on Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei, 34, Pozzuoli, 80078, Italy.
| | - Ernesto Di Maio
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, P.le Tecchio, 80, Naples, 80125, Italy.
- foamlab, University of Naples Federico II, P.le Tecchio, 80, Naples, 80125, Italy.
| |
Collapse
|
3
|
Geng W, Guo Y, Chen B, Cheng X, Li S, Challioui MK, Tian W, Li H, Zhang Y, Li Z, Jiang R, Tian Y, Kang X, Liu X. IGFBP7 promotes the proliferation and differentiation of primary myoblasts and intramuscular preadipocytes in chicken. Poult Sci 2024; 103:104258. [PMID: 39293261 PMCID: PMC11426050 DOI: 10.1016/j.psj.2024.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Though it is well known that insulin-like growth factor (IGF) binding protein 7 (IGFBP7) plays an important role in myogenesis and adipogenesis in mammals, its impact on the proliferation, differentiation, and lipid deposition in chicken primary myoblasts (CPM) and intramuscular preadipocytes remains unexplored. In the present study, we firstly examined the correlation between SNPs within the genomic sequence of the IGFBP7 gene and carcass and blood chemical traits in a F2 resource population by genetic association analysis, and found that a significant correlation between the SNP (4_49499525) located in the intron region of IGFBP7 and serum high-density lipoproteins (HDL). We then examined the expression patterns of IGFBP7 across different stages of proliferation and differentiation in CPMs and intramuscular preadipocytes via qPCR, and explored the biological functions of IGFBP7 through gain- and loss-of-function experiments and a range of techniques including qPCR, CCK-8, EdU, flow cytometry, Western blot, immunofluorescence, and Oil Red O staining to detect the proliferation, differentiation, and lipid deposition in CPMs and intramuscular preadipocytes. We ascertained that the expression levels of the IGFBP7 gene increased as cell differentiation progresses in CPMs and intramuscular preadipocytes, and that IGFBP7 promotes the proliferation and differentiation of these cells, as well as facilitates intracellular lipid deposition. Furthermore, we investigated the regulatory mechanism of IGFBP7 expression by using co-transfection strategy and dual-luciferase reporter assay, and discovered that the myogenic transcription factors (MRF), myoblast determination factor (MyoD) and myogenin (MyoG), along with the adipocyte-specific transcription factor (TF) CCAAT/enhancer-binding protein α (C/EBPα), can bind to the core transcription activation region of the IGFBP7 promoter located 500 bp upstream from the transcription start site, thereby promoting IGFBP7 transcription and expression. Taken together, our study underscores the role of IGFBP7 as a positive regulator for myogenesis and adipogenesis, while also elucidating the functional and transcriptional regulatory mechanisms of IGFBP7 in chicken skeletal muscle development and intramuscular adipogenesis.
Collapse
Affiliation(s)
- Wanzhuo Geng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Botong Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xi Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuohan Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mohammed Kamal Challioui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Animal Production and Biotechnology Department, Institut Agronomique et Vétérinaire Hassan II, Rabat P.O. Box 6202, Rabat, Morocco
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Ghosh B, Chakraborty J, Abualreish MJA, Mondal P, Mahali K, Henaish AMA, Roy S. Study on solubility and solvation thermodynamics for the advancement of biorelevant activities of l-isoleucine and l-serine in aqueous ammonium chloride solutions in the temperature range of 288.15-308.15 K. Biochem Biophys Res Commun 2024; 735:150809. [PMID: 39406017 DOI: 10.1016/j.bbrc.2024.150809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
This study investigated the dissolution behavior of l-isoleucine and l-serine in an aqueous salt solution (ammonium chloride), examining how variations in temperature and electrolyte concentration affect their solubility. We conducted careful experiments and used mathematical calculations to explore interactions at a molecular level. We observed that the structure of these amino acids and salt concentration in the aqueous medium influence their interactions, which affects dissolution. In the presence of electrolytes, l-isoleucine demonstrated a salting-out effect whereas l-serine showed a salting-in effect. This work examines the solute-solvent interactions of these solutes in aqueous ammonium chloride solutions. l-isoleucine exhibits a nonspontaneous reaction with increasing salt concentrations whereas l-serine shows spontaneous behavior. Gibbs free energy analysis revealed greater stability of l-serine. The pH and conductance measurements showed how these factors influence solution properties. This insight helps us comprehend the nature and behavior of these molecules in different situations, which could be helpful in drug formulation or protein purification in the future.
Collapse
Affiliation(s)
- Biplab Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, 741235, Nadia, India
| | - Jit Chakraborty
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, Nadia, India
| | - Mustafa J A Abualreish
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Pratima Mondal
- Department of Chemistry, University of Kalyani, Kalyani, 741235, Nadia, India
| | - Kalachand Mahali
- Department of Chemistry, University of Kalyani, Kalyani, 741235, Nadia, India.
| | - A M A Henaish
- Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Netaji Subhas Open University, Kolkata, West Bengal, India.
| |
Collapse
|
5
|
Yu Y, Fu R, Jin C, Gao H, Han L, Fu B, Qi M, Li Q, Suo Z, Leng J. Regulation of Milk Fat Synthesis: Key Genes and Microbial Functions. Microorganisms 2024; 12:2302. [PMID: 39597692 PMCID: PMC11596427 DOI: 10.3390/microorganisms12112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Milk is rich in a variety of essential nutrients, including fats, proteins, and trace elements that are important for human health. In particular, milk fat has an alleviating effect on diseases such as heart disease and diabetes. Fatty acids, the basic units of milk fat, play an important role in many biological reactions in the body, including the involvement of glycerophospholipids and sphingolipids in the formation of cell membranes. However, milk fat synthesis is a complex biological process involving multiple organs and tissues, and how to improve milk fat of dairy cows has been a hot research issue in the industry. There exists a close relationship between milk fat synthesis, genes, and microbial functions, as a result of the organic integration between the different tissues of the cow's organism and the external environment. This review paper aims (1) to highlight the synthesis and regulation of milk fat by the first and second genomes (gastrointestinal microbial genome) and (2) to discuss the effects of ruminal microorganisms and host metabolites on milk fat synthesis. Through exploring the interactions between the first and second genomes, and discovering the relationship between microbial and host metabolite in the milk fat synthesis pathway, it may become a new direction for future research on the mechanism of milk fat synthesis in dairy cows.
Collapse
Affiliation(s)
- Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Zhuo Suo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Cui H, Wang Y, Zhu Y, Liu X, Liu L, Wang J, Tan X, Wang Y, Xing S, Luo N, Liu L, Liu R, Zheng M, Zhao G, Wen J. Genomic insights into the contribution of de novo lipogenesis to intramuscular fat deposition in chicken. J Adv Res 2024; 65:19-31. [PMID: 38065407 PMCID: PMC11519054 DOI: 10.1016/j.jare.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 10/21/2024] Open
Abstract
INTRODUCTION The proportion of animal based foods in daily diet of consumers is constantly increasing, with chicken being highly favored due to its high protein and low fat characteristics. The consumption of chicken around the world is steadily increasing. Intramuscular fat (IMF) is a key indicator affecting meat quality. OBJECT High IMF content can contribute to improve the quality of chicken meat. The regulatory mechanism of IMF deposition in chicken is poorly understood, so its complete elucidation is essential to improve chicken meat quality. METHOD Here, we performed whole genome resequencing on 516 yellow feather chickens and single-cell RNA sequencing on 3 63-day-old female JXY chickens. In addition, transcriptome sequencing techniques were also performed on breast muscle tissue of JXY chickens at different developmental stages. And 13C isotope tracing technique was applied. RESULTS In this study, a large-scale genetic analysis of an IMF-selected population and a control population identified fatty acid synthase (FASN) as a key gene for improving IMF content. Also, contrary to conventional view, de novo lipogenesis (DNL) was deemed to be an important contributor to IMF deposition. As expected, further analyses by isotope tracing and other techniques, confirmed that DNL mainly occurs in myocytes, contributing about 40% of the total fatty acids through the regulation of FASN, using the available FAs as substrates. Additionally, we also identified a relevant causal mutation in the FASN gene with effects on FA composition. CONCLUSION These findings contribute to the understanding of fat metabolism in muscle tissue of poultry, and provide the feasible strategy for the production of high-quality chicken meat.
Collapse
Affiliation(s)
- Huanxian Cui
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yongli Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuting Zhu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaojing Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lu Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jie Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaodong Tan
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yidong Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Siyuan Xing
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Na Luo
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Li Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
7
|
Chang YC, Chen YC, Chan YC, Liu C, Chang SJ. Oligonol ®, an Oligomerized Polyphenol from Litchi chinensis, Enhances Branched-Chain Amino Acid Transportation and Catabolism to Alleviate Sarcopenia. Int J Mol Sci 2024; 25:11549. [PMID: 39519101 PMCID: PMC11546093 DOI: 10.3390/ijms252111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Branched-chain amino acids (BCAAs) are essential for muscle protein synthesis and are widely acknowledged for mitigating sarcopenia. Oligonol® (Olg), a low-molecular-weight polyphenol from Litchi chinensis, has also been found to attenuate sarcopenia by improving mitochondrial quality and positive protein turnover. This study aims to investigate the effect of Olg on BCAA-stimulated protein synthesis in sarcopenia. In sarcopenic C57BL/6 mice and senescence-accelerated mouse-prone 8 (SAMP8) mice, BCAAs were significantly decreased in skeletal muscle but increased in blood serum. Furthermore, the expressions of membrane L-type amino acid transporter 1 (LAT1) and branched-chain amino acid transaminase 2 (BCAT2) in skeletal muscle were lower in aged mice than in young mice. The administration of Olg for 8 weeks significantly increased the expressions of membrane LAT1 and BCAT2 in the skeletal muscle when compared with non-treated SAMP8 mice. We further found that BCAA deprivation via LAT1-siRNA in C2C12 myotubes inhibited the signaling of protein synthesis and facilitated ubiquitination degradation of BCAT2. In C2C12 cells mimicking sarcopenia, Olg combined with BCAA supplementation enhanced mTOR/p70S6K activity more than BCAA alone. However, blocked LAT1 by JPH203 reversed the synergistic effect of the combination of Olg and BCAAs. Taken together, changes in LAT1 and BCAT2 during aging profoundly alter BCAA availability and nutrient signaling in aged mice. Olg increases BCAA-stimulated protein synthesis via modulating BCAA transportation and BCAA catabolism. Combining Olg and BCAAs may be a useful nutritional strategy for alleviating sarcopenia.
Collapse
Affiliation(s)
- Yun-Ching Chang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-C.C.)
| | - Yu-Chi Chen
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-C.C.)
- Department of Urology, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung 43330, Taiwan;
| | - Cheng Liu
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Duarte SG, Donado-Pestana CM, More TH, Rodrigues L, Hiller K, Fiamoncini J. Dry blood spots as a sampling strategy to identify insulin resistance markers during a dietary challenge. GENES & NUTRITION 2024; 19:18. [PMID: 39210266 PMCID: PMC11363552 DOI: 10.1186/s12263-024-00752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to identify markers of postprandial dysglycemia in the blood of self-described healthy individuals using dry blood spots (DBS) as a sampling strategy. A total of 54 volunteers, including 31 women, participated in a dietary challenge. They consumed a high-fat, high-sugar mixed meal and underwent multiple blood sampling over the course of 150 min to track their postprandial responses. Blood glucose levels were monitored with a portable glucometer and individuals were classified into two groups based on the glucose area under the curve (AUC): High-AUC (H-AUC) and Low-AUC (L-AUC). DBS sampling was performed at the same time points as the assessment of glycemia using Whatman 903 Protein Saver filter paper. A gas chromatography-mass spectrometry-based metabolite profiling was conducted in the DBS samples to assess postprandial changes in blood metabolome. Higher concentrations of metabolites associated with insulin resistance were observed in individuals from the H-AUC group, including sugars and sugar-derived products such as fructose and threonic acid, as well as organic acids and fatty acids such as succinate and stearic acid. Several metabolites detected in the GC-MS analysis remained unidentified, indicating that other markers of hyperglycemia remain to be discovered in DBS. Based on these observations, we demonstrated that the use of DBS as a non-invasive and inexpensive sampling tool allows the identification of metabolites markers of dysglycemia in the postprandial period.
Collapse
Affiliation(s)
- Stephany Gonçalves Duarte
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bloco 14, São Paulo, SP, CEP 05508-900, Brazil
| | - Carlos M Donado-Pestana
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bloco 14, São Paulo, SP, CEP 05508-900, Brazil
- Food Research Center - FoRC, University of São Paulo, São Paulo, Brazil
| | - Tushar H More
- Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Larissa Rodrigues
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bloco 14, São Paulo, SP, CEP 05508-900, Brazil
| | - Karsten Hiller
- Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jarlei Fiamoncini
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bloco 14, São Paulo, SP, CEP 05508-900, Brazil.
- Food Research Center - FoRC, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Wang Y, Rong X, Guan H, Ouyang F, Zhou X, Li F, Tan X, Li D. The Potential Effects of Isoleucine Restricted Diet on Cognitive Impairment in High-Fat-Induced Obese Mice via Gut Microbiota-Brain Axis. Mol Nutr Food Res 2023; 67:e2200767. [PMID: 37658490 DOI: 10.1002/mnfr.202200767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/15/2023] [Indexed: 09/03/2023]
Abstract
SCOPE Obesity induced by high-fat diet (HFD) can cause lipid metabolism disorders and cognitive impairment. Isoleucine restriction can effectively alleviate lipid metabolism disorders caused by HFD but the underlying mechanisms on cognition are unknown. METHODS AND RESULTS Thirty 3-month-old C57BL/6J mice are divided equally into the following groups: the control group, HFD group, and HFD Low Ile group (67% reduction in isoleucine in high fat feeds). Feeding for 11 weeks with behavioral testing, which shows that isoleucine restriction attenuates HFD-induced cognitive dysfunction. As observed by staining, isoleucine restriction inhibits HFD-induced neuronal damage and microglia activation. Furthermore, isoleucine restriction significantly increases the relative abundance of gut microbiota, decreases the proportion of Proteobacteria, and reduces the levels of lipopolysaccharide (LPS) in serum and brain. Isoleucine restriction reduces protein expression of TLR4/MyD88/NF-κB signaling pathway and inhibits upregulation of proinflammatory cytokine genes and protein expression in mice brain. In addition, isoleucine restriction significantly improves insulin resistance in the brain as well as synaptic plasticity impairment. CONCLUSION Isoleucine restriction may be a potential intervention to reduce HFD-induced cognitive impairment by altering gut microbiota, reducing neuroinflammation, insulin resistance, and improving synaptic plasticity in mice brain.
Collapse
Affiliation(s)
- Yuli Wang
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Xue Rong
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Fangxin Ouyang
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Xing Zhou
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| |
Collapse
|
10
|
Yao H, Li K, Wei J, Lin Y, Liu Y. The contradictory role of branched-chain amino acids in lifespan and insulin resistance. Front Nutr 2023; 10:1189982. [PMID: 37408986 PMCID: PMC10318341 DOI: 10.3389/fnut.2023.1189982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Branched-chain amino acids (BCAAs; a mixture of leucine, valine and isoleucine) have important regulatory effects on glucose and lipid metabolism, protein synthesis and longevity. Many studies have reported that circulating BCAA levels or dietary intake of BCAAs is associated with longevity, sarcopenia, obesity, and diabetes. Among them, the influence of BCAAs on aging and insulin resistance often present different benefits or harmful effects in the elderly and in animals. Considering the nonobvious correlation between circulating BCAA levels and BCAA uptake, as well as the influence of diseases, diet and aging on the body, some of the contradictory conclusions have been drawn. The regulatory mechanism of the remaining contradictory role may be related to endogenous branched-chain amino acid levels, branched-chain amino acid metabolism and mTOR-related autophagy. Furthermore, the recent discovery that insulin resistance may be independent of longevity has expanded the research thinking related to the regulatory mechanism among the three. However, the negative effects of BCAAs on longevity and insulin resistance were mostly observed in high-fat diet-fed subjects or obese individuals, while the effects in other diseases still need to be studied further. In conclusion, there is still no definite conclusion on the specific conditions under which BCAAs and insulin resistance extend life, shorten life, or do not change lifespan, and there is still no credible and comprehensive explanation for the different effects of BCAAs and insulin resistance on lifespan.
Collapse
Affiliation(s)
- He Yao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- Department of General Surgery, The First People’s Hospital of Taian, Taian, Shandong, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Diseases, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Ruan D, Fan QL, Zhang S, Ei-Senousey HK, Fouad AM, Lin XJ, Dong XL, Deng YF, Yan SJ, Zheng CT, Jiang ZY, Jiang SQ. Dietary isoleucine supplementation enhances growth performance, modulates the expression of genes related to amino acid transporters and protein metabolism, and gut microbiota in yellow-feathered chickens. Poult Sci 2023; 102:102774. [PMID: 37302324 PMCID: PMC10276271 DOI: 10.1016/j.psj.2023.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
This study investigated the effects of dietary isoleucine (Ile) on growth performance, intestinal expression of amino acid transporters, protein metabolism-related genes and intestinal microbiota in starter phase Chinese yellow-feathered chickens. Female Xinguang yellow-feathered chickens (n = 1,080, aged 1 d) were randomly distributed to 6 treatments, each with 6 replicates of 30 birds. Chickens were fed diets with 6 levels of total Ile (6.8, 7.6, 8.4, 9.2, 10.0, and 10.8 g/kg) for 30 d. The average daily gain and feed conversion ratio were improved with dietary Ile levels (P < 0.05). Plasma uric acid content and glutamic-oxalacetic transaminase activity were linearly and quadratically decreased with increasing dietary Ile inclusion (P < 0.05). Dietary Ile level had a linear (P < 0.05) or quadratic (P < 0.05) effect on the jejunal expression of ribosomal protein S6 kinase B1 and eukaryotic translation initiation factor 4E binding protein 1. The relative expression of jejunal 20S proteasome subunit C2 and ileal muscle ring finger-containing protein 1 decreased linearly (P < 0.05) and quadratically (P < 0.05) with increasing dietary Ile levels. Dietary Ile level had a linear (P = 0.069) or quadratic (P < 0.05) effect on the gene expression of solute carrier family 15 member 1 in jejunum and solute carrier family 7 member 1 in ileum. In addition, bacterial 16S rDNA full-length sequencing showed that dietary Ile increased the cecal abundances of the Firmicutes phylum, and Blautia, Lactobacillus, and unclassified_Lachnospiraceae genera, while decreased that of Proteobacteria, Alistipes, and Shigella. Dietary Ile levels affected growth performance and modulated gut microbiota in yellow-feathered chickens. The appropriate level of dietary Ile can upregulate the expression of intestinal protein synthesis-related protein kinase genes and concomitantly inhibit the expression of proteolysis-related cathepsin genes.
Collapse
Affiliation(s)
- D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Q L Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - S Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - H K Ei-Senousey
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - A M Fouad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - X J Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - X L Dong
- CJ International Trading Co., Ltd., Shanghai 201107, China
| | - Y F Deng
- CJ International Trading Co., Ltd., Shanghai 201107, China
| | - S J Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Z Y Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - S Q Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| |
Collapse
|
12
|
Baumgartel K, Stevens M, Vijayakumar N, Saint Fleur A, Prescott S, Groer M. The Human Milk Metabolome: A Scoping Literature Review. J Hum Lact 2023; 39:255-277. [PMID: 36924445 DOI: 10.1177/08903344231156449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Human milk is a complex source of nutrition and other bioactives that protects infants from disease, holding a lifetime of beneficial effects. The field of metabolomics provides a robust platform through which we can better understand human milk at a level rarely examined. RESEARCH AIM To Identify, describe, synthesize, and critically analyze the literature within the past 5 years related to the human milk metabolome. METHODS We conducted a scoping literature review and quality analysis of the recent science reflecting untargeted metabolomic approaches to examining human milk. We searched six databases using the terms "breast milk," "metabolome," "metabolite," and "human milk," Out of more than 1,069 abstracts, we screened and identified 22 articles that met our inclusion criteria. RESULTS We extracted data related to the study author, geographic location, research design, analyses, platform used, and results. We also extracted data related to human milk research activities, including collection protocol, infant/maternal considerations, and time. Selected studies focused on a variety of phenotypes, including maternal and infant disease. Investigators used varying approaches to evaluate the metabolome, and differing milk collection protocols were observed. CONCLUSION The human milk metabolome is informed by many factors-which may contribute to infant health outcomes-that have resulted in disparate milk metabolomic profiles. Standardized milk collection and storage procedures should be implemented to minimize degradation. Investigators may use our findings to develop research questions that test a targeted metabolomic approach.
Collapse
Affiliation(s)
| | - Monica Stevens
- College of Medicine, University of South Florida, Tampa, FL, USA
| | - Nisha Vijayakumar
- School of Public Health, University of South Florida, Tampa, FL, USA
| | | | | | - Maureen Groer
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
13
|
Wu J, Wen L, Chen J, Chang Y, Huang R, Lin Y, Shen G, Feng J. Discover boy specific-biomarkers and reveal gender-related metabolic differences in central precocious puberty. J Steroid Biochem Mol Biol 2023; 231:106305. [PMID: 36997004 DOI: 10.1016/j.jsbmb.2023.106305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The incidence of central precocious puberty (CPP) in boys is rising, but lack of effective molecular biomarkers often leads to delayed treatment and thus the terrible clinical complications in adulthood. This study aims to identify the specific-biomarkers of CPP boys and understand the gender-related differences in metabolic characteristics of CPP. The specific-biomarkers of CPP boys were identified from serum and their combination was optimized by cross-metabolomics combined with linear discriminant analysis effect size analysis after age correction. The differences in metabolic characteristics between boys and girls with CPP were explored by cross-metabolomics and weighted gene co-expression network analysis. Results show that CPP activated in advance the HPG axis and induced gender-related clinical phenotypes. Seven serum metabolites were identified as specific-biomarkers of CPP boys, including acetoacetate, aspartate, choline, creatinine, myo-inositol, N,N-dimethylglycine and N-Acetyl-glycoprotein. The combination of aspartate, choline, myo-inositol and creatinine achieved an optimized diagnosis, where AUC is 0.949, prediction accuracy for CPP boys is 91.1%, and the average accuracy is 0.865. The metabolic disorders of CPP boys mainly involve in glycerophospholipid metabolism, and synthesis and degradation of ketone bodies. Betaine, glutamine, isoleucine, lactate, leucine, lysine, pyruvate, α-&β-glucose were identified as gender-related biomarkers for CPP, and they are mainly involved in glycolysis/gluconeogenesis, pyruvate metabolism, and alanine, aspartate and glutamate metabolism. Biomarkers combination provides a promising diagnostic potential for CPP boy with a favorite sensitivity and specificity. In addition, the differences of metabolic characteristics between boys and girls with CPP will contribute to the development of individualized clinical treatments in CPP.
Collapse
|
14
|
Arshad HM, Ahmad FUD, Lodhi AH. Methanolic Extract of Aerva javanica Leaves Prevents LPS-Induced Depressive Like Behavior in Experimental Mice. Drug Des Devel Ther 2022; 16:4179-4204. [PMID: 36514526 PMCID: PMC9741839 DOI: 10.2147/dddt.s383054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Aim Depression is a chronic recurrent neuropsychiatric disorder associated with inflammation. This study explored the pharmacological activities of Aerva javanica leaves crude extract (Aj.Cr) on lipopolysaccharide (LPS)-induced depressive-like behavior in experimental mice. Methods Aj.Cr was evaluated for its phenolic and flavonoid contents, bioactive potential, amino acid profiling and enzyme inhibition assays using different analytical techniques followed by in-silico molecular docking was performed. In addition, three ligands identified in HPLC analysis and standard galantamine were docked to acetyl cholinesterase (AchE) enzyme to assess the ligand interaction along with their binding affinities. In in-vivo analysis, mice were given normal saline (10 mL/kg), imipramine (10 mg/kg) and Aj.Cr (100, 300, and 500 mg/kg) orally for 14-consecutive days. On the 14th day, respective treatment was given 30-minutes before intra-peritoneal administration of (0.83 mg/kg) LPS. Open field, forced swim and tail suspension tests were performed 24-hours after LPS injection, followed by a sucrose preference test 48-hours later. Serum corticosterone levels, as well as levels of nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-alpha (TNF-), interleukin-1β (IL-1β), interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF) and catecholamines were determined in brain tissues. Results In-vitro results revealed that crude extract of Aj.Cr possesses anti-depressant agents with solid antioxidant potential. In-vivo analysis showed that LPS significantly increased depressive-like behavior followed by alteration in serum and tissue biomarkers as compared to normal control (p < 0.001). While imipramine and Aj.Cr (100, 300, and 500 mg/kg) treated groups significantly (p<0.05) improved the depressive-like behavior and biomarkers when compared to the LPS group. Conclusion The mitigation of LPS-induced depressive-like behavior by Aj.Cr may be linked to the modulation of oxidative stress, neuro-inflammation and catecholamines due to the presence of potent bioactive compounds exerting anti-depressant effects.
Collapse
Affiliation(s)
- Hafiza Maida Arshad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiaz-ud-Din Ahmad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan,Correspondence: Fiaz-ud-Din Ahmad, Department of Pharmacology, the Islamia University of Bahawalpur, Pakistan Khawaja Fareed Campus, Railway Road, Bahawalpur, 63100, Pakistan, Tel +92-320-8402376, Email
| | - Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
15
|
Evaluation of the metabolomic profile through 1H-NMR spectroscopy in ewes affected by postpartum hyperketonemia. Sci Rep 2022; 12:16463. [PMID: 36183000 PMCID: PMC9526738 DOI: 10.1038/s41598-022-20371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Ketosis is one of the most important health problems in dairy sheep. The aim of this study was to evaluate the metabolic alterations in hyperketonemic (HYK) ewes. Forty-six adult Sardinian ewes were enrolled between 7 ± 3 days post-partum. Blood samples were collected from the jugular vein using Venosafe tubes containing clot activator from jugular vein after clinical examination. The concentration of β-hydroxybutyrate (BHB) was determined in serum and used to divide ewes into assign ewes into: Non-HYK (serum BHB < 0.80 mmol/L) and HYK (serum BHB ≥ 0.80 mmol/L) groups. Animal data and biochemical parameters of groups were examined with one-way ANOVA, and metabolite differences were tested using a t-test. A robust principal component analysis model and a heatmap were used to highlight common trends among metabolites. Over-representation analysis was performed to investigate metabolic pathways potentially altered in connection with BHB alterations. The metabolomic analysis identified 54 metabolites with 14 different between groups. These metabolites indicate altered ruminal microbial populations and fermentations; an interruption of the tricarboxylic acid cycle; initial lack of glucogenic substrates; mobilization of body reserves; the potential alteration of electron transport chain; influence on urea synthesis; alteration of nervous system, inflammatory response, and immune cell function.
Collapse
|
16
|
Amino Acid Profiles and Nutritional Evaluation of Fresh Sweet–Waxy Corn from Three Different Regions of China. Nutrients 2022; 14:nu14193887. [PMID: 36235541 PMCID: PMC9572857 DOI: 10.3390/nu14193887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
This study conducted a comparative analysis of the amino acid compositions of Chinese Huangnuo 9 fresh sweet–waxy corn from three different provinces in China—Inner Mongolia, Jilin, and Heilongjiang Province. Moreover, we established a nutritive evaluation system based on amino acid profiles to evaluate, compare, and rank the fresh sweet–waxy corn planted in different regions. A total of 17 amino acids were quantified, and the amino acid composition of fresh sweet–waxy corn was analyzed and evaluated. The amino acid quality was determined by the amino acid pattern spectrum, chemical evaluations (including CS, AAS, EAAI, BV, U(a,u), NI, F, predict PER, and PDCAAS), flavor evaluation, amino acid matching degree evaluation, and the results of the factor analysis. The results showed that the protein content of fresh corn 1–1 from Inner Mongolia was the highest (40.26 ± 0.35 mg/g), but the factor analysis results, digestion, and absorption efficiency of fresh corn 1–2 were the best. The amino acid profile of fresh corn 1–1 was closest to each evaluation’s model spectrum. The results of the diversity evaluations in fresh corn 3–2 were the best, and fresh corn 3–3 had the most essential amino acid content. A total of 17 amino acids in fresh corn were divided into three principal component factor analyses: functional principal components (Leu, Pro, Glu, His, Ile, Ser, Met, Val, Tyr, Thr), regulatory principal components (Lys, Gly, Ala, Asp, Arg, Trp), and protection principal components (Phe). The scores of the three principal components and the comprehensive score in fresh corn 1–2 were all the highest, followed by 3–3 and 1–1. The amino acid nutritional values of fresh corn 1–2 were the highest in 12 samples.
Collapse
|
17
|
Discriminant Analysis of the Nutritional Components between Organic Eggs and Conventional Eggs: A 1H NMR-Based Metabolomics Study. Molecules 2022; 27:molecules27093008. [PMID: 35566355 PMCID: PMC9102658 DOI: 10.3390/molecules27093008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
The difference of nutrient composition between organic eggs and conventional eggs has always been a concern of people. In this study, 1H nuclear magnetic resonance (NMR) technique combined with multivariate statistical analyses was conducted to identify the metabolite different in egg yolk and egg white in order to reveal the nutritional components information between organic and conventional eggs. The results showed that the nutrient content and composition characteristics were different between organic and conventional eggs, among which the content of glucose, putrescine, amino acids and their derivatives were found higher in the organic eggs yolk, while phospholipids were demonstrated higher in conventional eggs yolk. Organic acid, alcohol, amine, choline and amino acids were higher in conventional eggs white, but glucose and lactate in organic egg were higher. Our study demonstrated that there are more nutritive components and higher nutritional value in organic eggs than conventional eggs, especially for the growth and development of infants and young children, and conventional eggs have more advantages in promoting lipid metabolism, preventing fatty liver, and reducing serum cholesterol. Eggs have important nutritional value to human body, and these two kinds of eggs can be selected according to the actual nutrient needs.
Collapse
|
18
|
Differences in the serum metabolome profile of dairy cows according to the BHB concentration revealed by proton nuclear magnetic resonance spectroscopy ( 1H-NMR). Sci Rep 2022; 12:2525. [PMID: 35169190 PMCID: PMC8847571 DOI: 10.1038/s41598-022-06507-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The mobilization of body reserves during the transition from pregnancy to lactation might predispose dairy cows to develop metabolic disorders such as subclinical ketosis or hyperketonemia. These conditions are not easily identifiable and are frequently related to other diseases that cause economic loss. The aim of this study was to evaluate the serum metabolome differences according to the β-hydroxybutyrate (BHB) concentration. Forty-nine Holstein Friesian dairy cows were enrolled between 15 and 30 days in milk. According to their serum BHB concentration, the animals were divided into three groups: Group 0 (G0; 12 healthy animals; BHB ≤ 0.50 mmol/L); Group 1 (G1; 19 healthy animals; 0.51 ≤ BHB < 1.0 mmol/L); and Group 2 (G2; 18 hyperketonemic animals; BHB ≥ 1.0 mmol/L). Animal data and biochemical parameters were examined with one-way ANOVA, and metabolite significant differences were examined by t-tests. Fifty-seven metabolites were identified in the serum samples. Thirteen metabolites showed significant effects and seemed to be related to the mobilization of body reserves, lipids, amino acid and carbohydrate metabolism, and ruminal fermentation.
Collapse
|
19
|
Takeda S, Kaji K, Nishimura N, Enomoto M, Fujimoto Y, Murata K, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Yoshiji H. Angiotensin Receptor Blockers Potentiate the Protective Effect of Branched-Chain Amino Acids on Skeletal Muscle Atrophy in Cirrhotic Rats. Mol Nutr Food Res 2021; 65:e2100526. [PMID: 34687151 DOI: 10.1002/mnfr.202100526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/11/2021] [Indexed: 12/11/2022]
Abstract
SCOPE This study investigated the combined effect of the angiotensin II (AT-II) receptor blocker losartan and branched-chain amino acids (BCAAs) on skeletal muscle atrophy in rats with cirrhosis and steatohepatitis. METHOD AND RESULTS Fischer 344 rats are fed a choline-deficient l-amino acid-defined (CDAA) diet for 12 weeks and treated with oral losartan (30 mg kg-1 day-1 ) and/or BCAAs (Aminoleban EN, 2500 mg kg-1 day-1 ). Treatment with losartan and BCAAs attenuated hepatic inflammation and fibrosis and improved skeletal muscle atrophy and strength in CDAA-fed rats. Both agents reduced intramuscular myostatin and pro-inflammatory cytokine levels, resulting in inhibition of the ubiquitin-proteasome system (UPS) through interference with the SMAD and nuclear factor-kappa B pathways, respectively. Losartan also augmented the BCAA-mediated increase of skeletal muscle mass by promoting insulin growth factor-I production and mitochondrial biogenesis. Moreover, losartan decreased the intramuscular expression of transcription factor EB (TFEB), a transcriptional inducer of E3 ubiquitin ligase regulated by AT-II. In vitro assays illustrated that losartan promoted mitochondrial biogenesis and reduced TFEB expression in AT-II-stimulated rat myocytes, thereby potentiating the inhibitory effects of BCAAs on the UPS and caspase-3 cleavage. CONCLUSION These results indicate that this regimen could serve as a novel treatment for patients with sarcopenia and liver cirrhosis.
Collapse
Affiliation(s)
- Soichi Takeda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
20
|
Dai M, Lin T, Yue J, Dai L. Signatures and Clinical Significance of Amino Acid Flux in Sarcopenia: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:725518. [PMID: 34589057 PMCID: PMC8473793 DOI: 10.3389/fendo.2021.725518] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Dysregulation of amino acids is closely linked to the initiation and progression of sarcopenia. We summarized recent advancements in the studies of amino acid profiles in sarcopenia and systematically presented the clinical significance of amino acid flux in sarcopenia. METHODS We systematically searched in MEDLINE, EMBASE, and Cochrane library from inception to June 1, 2021 to capture all studies examining metabolomics of sarcopenia. We used the following keywords: sarcopenia, metabonomics, metabolomics, amino acid profile, and mass spectrometry. Original articles comparing amino acid patterns between persons with and without sarcopenia were included. Two independent investigators independently completed title and abstract screening, data extraction, and quality evaluation. We used a random effects model to examine the association between amino acids levels and sarcopenia. Sensitivity analyses restricted the analyses to studies in which muscle mass was measured by bioelectrical impedance analysis. Study quality was evaluated according to the Agency for Healthcare Research and Quality (AHRQ) checklist. RESULTS The systematic research yielded six eligible articles, comprising 1,120 participants. Five studies used muscle mass in combination with physical performance and/or muscle strength as the criteria to diagnose sarcopenia, while one study used muscle mass as a diagnostic criterion alone. We found that the concentrations of branched-chain amino acids leucine (standardized mean difference [SMD] -1.249; 95% confidence interval [CI]: -2.275, -0.223, P = 0.02, I2 = 97.7%), isoleucine (SMD -1.077; 95% CI: -2.106, -0.049, P = 0.04, I2 = 97.8%), and aromatic amino acid tryptophan (SMD -0.923; 95% CI: -1.580, -0.265, P = 0.01, I2 = 89.9%) were significantly reduced in individuals with sarcopenia. Study results were robust in sensitivity analysis. CONCLUSIONS The homeostasis of amino acids is critical to maintaining muscle health. The profiles of amino acids might be useful biomarkers for the characterization of sarcopenia. Future studies are warranted to study the clinical significance of amino acids in the diagnosis and treatment of sarcopenia.
Collapse
Affiliation(s)
- Miao Dai
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Taiping Lin
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jirong Yue
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Jirong Yue, ; Lunzhi Dai,
| | - Lunzhi Dai
- Department of State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Jirong Yue, ; Lunzhi Dai,
| |
Collapse
|