1
|
Wang Y, Xue Y, Xu H, Zhu Q, Qin K, He Z, Huang A, Mu M, Tao X. Pediococcus acidilactici Y01 reduces HFD-induced obesity via altering gut microbiota and metabolomic profiles and modulating adipose tissue macrophage M1/M2 polarization. Food Funct 2024. [PMID: 39699275 DOI: 10.1039/d4fo04301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Obesity-related metabolic syndrome is intimately associated with infiltrated adipose tissue macrophages (ATMs), gut microbiota, and metabolic disorders. Pediococcus acidilactici holds the potential to mitigate obesity; however, there exist strain-specific functionalities and diverse mechanisms, which deserve extensive exploration. This study aims to explore the potential of P. acidilactici Y01, isolated from traditional sour whey, in alleviating HFD-induced metabolic syndrome in mice and elucidating its underlying mechanism. The results showed that P. acidilactici Y01 could inhibit the increase of body weight gain, the deposition of fat, lipid disorders and chronic low-grade inflammation, improve glucose tolerance and insulin resistance, and could reduce adipose tissue inflammation by decreasing M1-type ATMs and increasing M2-type ATMs. Meanwhile, P. acidilactici Y01 significantly increased the abundance of potentially beneficial intestinal bacteria, such as Akkermansia, Alistipes, Bifidobacterium, Lachnospiraceae_NK4A136_group, Lactobacillus, norank_f__Muribaculaceae, and Parabacteroides, and partially restored the levels of metabolites, such as phosphatidylcholines, glycerophosphocholines, sphingolipids and unsaturated fatty acids. The fecal microbiota transplantation experiment demonstrated that P. acidilactici Y01 ameliorated obesity-related metabolic syndrome by modulating the polarization of M1/M2 ATMs mediated by gut microbiota. Overall, as a dietary supplement, P. acidilactici Y01 has good potential in the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yujing Wang
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| | - Yu Xue
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan 232001, China
| | - Huan Xu
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| | - Qian Zhu
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
| | - Kaili Qin
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| | - Zhonglei He
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Mu
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| | - Xinrong Tao
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| |
Collapse
|
2
|
Zheng M, Chao X, Zheng Y, Hong T, Wu W, Zhu Y, Ni H, Jiang Z. A polysaccharide from edible red seaweed Bangia fusco-purpurea prevents obesity in high-fat diet-induced C57BL/6 mice. Int J Biol Macromol 2024; 283:137545. [PMID: 39542298 DOI: 10.1016/j.ijbiomac.2024.137545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/26/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The study aimed to investigate the impacts of a polysaccharide (BFP) from Bangia fusco-purpurea on high-fat diet (HFD)-induced obesity in C57BL/6 mice, as well as its underlying mechanisms. Our results showed that orally administrated BFP was more effective than inulin (INU) in reducing body weight and fat accumulation in obese mice, indicating its anti-obesity effect. BFP effectively improved the compositions and metabolites of intestinal microbiota in obese mice, leading to enhanced energy metabolism and lipid metabolism, thus contributing to its anti-obesity effect. Notably, the better anti-obesity effect of BFP compared to INU was attributed to their varying degrees of modulation of specific intestinal microbial taxa, such as Clostridium and Aerococcus, as well as the regulation of differential metabolites (including biotin, piperine, G6P, etc.) also varied. Also, both in vitro (3T3-L1 preadipocytes) and in vivo (HFD-induced obese mice) models confirmed that BFP achieved anti-obesity effect attributed to enhance energy metabolism, promote lipolysis, increase fatty acid oxidation, and inhibit adipogenesis via activating the AMP-activated protein kinase and Acetyl-CoA carboxylase signaling pathways and suppressing the peroxisome proliferator-activated receptor γ expression. Our findings suggest that BFP has the potential to be used as prebiotics, dietary agents, and nutritional supplements against obesity.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Xiaoling Chao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yajun Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Weijing Wu
- Laboratory of nutrition and food safety, Xiamen Medical College, Xiamen, Fujian 361023, China.
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.
| |
Collapse
|
3
|
Zheng J, Shang M, Dai G, Dong J, Wang Y, Duan B. Bioactive polysaccharides from Momordica charantia as functional ingredients: a review of their extraction, bioactivities, structural-activity relationships, and application prospects. Crit Rev Food Sci Nutr 2024; 64:12103-12126. [PMID: 37599638 DOI: 10.1080/10408398.2023.2248246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Momordica charantia L. is a well-known medicine and food homology plant with high pharmaceutical and nutritional values. Polysaccharides are carbohydrate polymers connected by glycosidic bonds, one of the key functional ingredients of M. charantia. Recently, M. charantia polysaccharides (MCPs) have attracted much attention from industries and researchers due to their anti-oxidant, anti-tumor, anti-diabetes, anti-bacteria, immunomodulatory, neuroprotection, and organ protection activities. However, the development and utilization of MCPs-based functional foods and medicines were hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of MCPs. Herein, we provide an overview of the extraction, purification, structural characterization, bioactivities, and mechanisms of MCPs. Besides, SAR, toxicities, application, and influences of the modification associated with bioactivities are spotlighted, and the potential development and future study direction are scrutinized. This review provides knowledge and research underpinnings for the further research and application of MCPs as therapeutic agents and functional food additives.
Collapse
Affiliation(s)
- Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- College of Pharmaceutical Science, Dali University, Dali, China
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
4
|
Wei L, Wang B, Bai J, Zhang Y, Liu C, Suo H, Wang C. Postbiotics are a candidate for new functional foods. Food Chem X 2024; 23:101650. [PMID: 39113733 PMCID: PMC11304867 DOI: 10.1016/j.fochx.2024.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Accumulating studies have highlighted the great potential of postbiotics in alleviating diseases and protecting host health. Compared with traditional functional foods (such as probiotics and prebiotics), postbiotics have the advantages of a single composition, high physiological activity, long shelf life, easy absorption, and high targeting, etc. The development of postbiotics has led to a wide range of potential applications in functional food and drug development. However, the lack of clinical trial data, mechanism analyses, safety evaluations, and effective regulatory frameworks has limited the application of postbiotic products. This review describes the definition, classification, sources, and preparation methods of postbiotics, the progress and mechanism of preclinical and clinical research in improving host diseases, and their application in food. Strengthen understanding of the recognition and development of related products to lay a theoretical foundation.
Collapse
Affiliation(s)
- Li Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong 250000, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
| | - Yuyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Bai J, Yang Z, Luo W, Zhu Y, Zhao Y, Pan B, Zhang J, Zhu L, Huang S, Xiao X. Influences of Lactiplantibacillus plantarum dy-1 Fermentation on the Bitterness of Bitter Melon Juice, the Composition of Saponin Compounds, and Their Bioactivities. Foods 2024; 13:3341. [PMID: 39456403 PMCID: PMC11507596 DOI: 10.3390/foods13203341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Lactic acid bacteria fermentation is a beneficial bioprocessing method that can improve the flavor, transform nutrients, and maintain the biological activity of foods. The aim of this study is to investigate the effects of Lactiplantibacillus plantarum dy-1 fermentation on the nutritional components, flavor and taste properties, and composition of saponin compounds and their hypolipidemic and antioxidant activities. The results suggested that the total polyphenol content increased, and the soluble polysaccharides and total saponin contents decreased in fermented bitter melon juice (FJ) compared with those in non-fermented bitter melon juice (NFJ). The determination of volatile flavor substances by GC-MS revealed that the response values of acetic acid, n-octanol, sedumol, etc., augmented significantly, and taste analysis with an electronic tongue demonstrated lower bitterness and higher acidity in FJ. Furthermore, UPLC-Q-TOF-MS/MS testing showed a significant decrease in bitter compounds, including momordicines I and II, and a significant increase in the active saponin momordicine U in the fermented bitter melon saponin group (FJBMS). The in vitro assays indicated that FJBMS exhibited similar antioxidant activities as the non-fermented bitter melon saponin group (NFBMS). The in vitro results show that both NFBMS and FJBMS, when used at 50 μg/mL, could significantly reduce fat accumulation and the malondialdehyde (MDA) content and increased the catalase (CAT) activity, while there was no significant difference in the bioactivities of NFBMS and FJBMS. In conclusion, Lactiplantibacillus plantarum dy-1 fermentation is an effective means to lower the bitterness value of bitter melon and preserve the well-known bioactivities of its raw materials, which can improve the edibility of bitter melon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.B.); (Z.Y.); (W.L.); (Y.Z.); (Y.Z.); (B.P.); (J.Z.); (L.Z.); (S.H.)
| |
Collapse
|
6
|
Yan Y, Yuan H, Yang F, Na H, Yu X, Liu J, Wang Y. Seabuckthorn polysaccharides mitigate hepatic steatosis by modulating the Nrf-2/HO-1 pathway and gut microbiota. AMB Express 2024; 14:100. [PMID: 39251509 PMCID: PMC11383914 DOI: 10.1186/s13568-024-01756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming a significant global public health threat. Seabuckthorn (Hippophae rhamnoides L.) has been used in traditional Chinese medicine (TCM). The hypolipidemic effects of Seabuckthorn polysaccharides (SP) against high-fat diets (HFD)-induced NAFLD were systematically explored and compared with that of Bifidobacterium lactis V9 (B. Lactis V9). Results showed that HFD-induced alanine transaminase (ALT) and aspartate aminotransferase (AST) levels decreased by 2.8-fold and 4.5-fold, respectively, after SP supplementation. Moreover, the alleviating effect on hepatic lipid accumulation is better than that of B. Lactis V9. The ACC and FASN mRNA levels were significantly reduced by 1.8 fold (P < 0.05) and 2.3 folds (P < 0.05), respectively, while the CPT1α and PPARα mRNA levels was significantly increased by 2.3 fold (P < 0.05) and 1.6 fold (P < 0.05), respectively, after SP administration. SP activated phosphorylated-AMPK and inhibited PPARγ protein expression, improved serum oxidative stress and inflammation (P < 0.05). SP supplementation leads to increased hepatic expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and Superoxide dismutase-2 (SOD-2). Furthermore, SP treatment improved HFD-induced intestinal dysbiosis. Lentisphaerae, Firmicutes, Tenericutes and Peptococcus sp., RC9_gut_group sp., and Parabacteroides sp. of the gut microbiota were significantly associated with hepatic steatosis and indicators related to oxidative stress and inflammation. Therefore, SP can mitigate hepatic lipid accumulation by regulating Nrf-2/HO-1 signaling pathways and gut microbiota. This study offers new evidence supporting the use of SP as a prebiotic treatment for NAFLD.
Collapse
Affiliation(s)
- Yan Yan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haisheng Yuan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fan Yang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Heiya Na
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiuling Yu
- Inner Mongolia Tianqi Biotechnology Co., Ltd, Chifeng, 024000, China
| | - Jingran Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Yuzhen Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
7
|
Zhang H, Chen S, Yang L, Zhang S, Qin L, Jiang H. Distinct Gut Microbiota and Arachidonic Acid Metabolism in Obesity-Prone and Obesity-Resistant Mice with a High-Fat Diet. Nutrients 2024; 16:1579. [PMID: 38892512 PMCID: PMC11174461 DOI: 10.3390/nu16111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
An imbalance of energy intake and expenditure is commonly considered as the fundamental cause of obesity. However, individual variations in susceptibility to obesity do indeed exist in both humans and animals, even among those with the same living environments and dietary intakes. To further explore the potential influencing factors of these individual variations, male C57BL/6J mice were used for the development of obesity-prone and obesity-resistant mice models and were fed high-fat diets for 16 weeks. Compared to the obesity-prone mice, the obesity-resistant group showed a lower body weight, liver weight, adipose accumulation and pro-inflammatory cytokine levels. 16S rRNA sequencing, which was conducted for fecal microbiota analysis, found that the fecal microbiome's structural composition and biodiversity had changed in the two groups. The genera Allobaculumbiota, SMB53, Desulfovibrio and Clostridium increased in the obesity-prone mice, and the genera Streptococcus, Odoribacter and Leuconostoc were enriched in the obesity-resistant mice. Using widely targeted metabolomics analysis, 166 differential metabolites were found, especially those products involved in arachidonic acid (AA) metabolism, which were significantly reduced in the obesity-resistant mice. Moreover, KEGG pathway analysis exhibited that AA metabolism was the most enriched pathway. Significantly altered bacteria and obesity-related parameters, as well as AA metabolites, exhibited strong correlations. Overall, the phenotypes of the obesity-prone and obesity-resistant mice were linked to gut microbiota and AA metabolism, providing new insight for developing an in-depth understanding of the driving force of obesity resistance and a scientific reference for the targeted prevention and treatment of obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Z.); (S.C.); (L.Y.); (S.Z.); (L.Q.)
| |
Collapse
|
8
|
Li S, Li S, Liu S, Lu S, Li J, Cheng S, Zhang S, Huang S, Li J, Jian F. Portulaca oleracea exhibited anti-coccidian activity, fortified the gut microbiota of Hu lambs. AMB Express 2024; 14:50. [PMID: 38700828 PMCID: PMC11068709 DOI: 10.1186/s13568-024-01705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/13/2024] [Indexed: 05/06/2024] Open
Abstract
Coccidia of the genus Eimeria are important pathogens that cause coccidiosis in livestock and poultry. Due to the expansion of intensive farming, coccidiosis has become more difficult to control. In addition, the continued use of anti-coccidiosis drugs has led to drug resistance and residue. Some herbs used in traditional Chinese medicine (TCM) have been shown to alleviate the clinical symptoms of coccidiosis, while enhancing immunity and growth performance (GP) of livestock and poultry. Previous in vitro and in vivo studies have reported that the TCM herb Portulaca oleracea exhibited anti-parasitic activities. In total, 36 female Hu lambs were equally divided into six treatment groups: PL (low-dose P. oleracea), PH (high-dose P. oleracea), PW (P. oleracea water extract), PE (P. oleracea ethanol extract), DIC (diclazuril), and CON (control). The treatment period was 14 days. The McMaster counting method was used to evaluate the anti-coccidiosis effects of the different treatments. Untargeted metabolomics and 16S rRNA gene sequencing were used to investigate the effects of treatment on the gut microbiota (GM) and GP. The results showed that P. oleracea ameliorated coccidiosis, improved GP, increased the abundances of beneficial bacteria, and maintained the composition of the GM, but failed to completely clear coccidian oocysts. The Firmicutes to Bacteroides ratio was significantly increased in the PH group. P. oleracea increased metabolism of tryptophan as well as some vitamins and cofactors in the GM and decreased the relative content of arginine, tryptophan, niacin, and other nutrients, thereby promoting intestinal health and enhancing GP. As an alternative to the anti-coccidiosis drug DIC, P. oleracea effectively inhibited growth of coccidia, maintained the composition of the GM, promoted intestinal health, and increased nutrient digestibility.
Collapse
Affiliation(s)
- Shiheng Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Senyang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, China
| | - Shuaiqi Liu
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shunli Lu
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Jing Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shuqi Cheng
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Sumei Zhang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shucheng Huang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Junqiang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Fuchun Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
9
|
Hu Z, Luo Y, Wu Y, Qin D, Yang F, Luo F, Lin Q. Extraction, structures, biological effects and potential mechanisms of Momordica charantia polysaccharides: A review. Int J Biol Macromol 2024; 268:131498. [PMID: 38614167 DOI: 10.1016/j.ijbiomac.2024.131498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Momordica charantia L. is a kind of vegetable with medicinal value. As the main component of the vegetable, Momordica charantia polysaccharides (MCPs) mainly consist of galactose, galacturonic acid, xylose, rhamnose, mannose and the molecular weight range is 4.33 × 103-1.16 × 106 Da. MCPs have been found to have various biological activities in recent years, such as anti-oxidation, anti-diabetes, anti-brain injury, anti-obesity, immunomodulatory and anti-inflammation. In this review, we systematically summarized the extraction methods, structural characteristics and physicochemical properties of MCPs. Especially MCPs modulate gut microbiota and cause the alterations of metabolic products, which can regulate different signaling pathways and target gene expressions to exert various functions. Meanwhile, the potential structure-activity relationships of MCPs were analyzed to provide a scientific basis for better development or modification of MCPs. Future researches on MCPs should focus on industrial extraction and molecular mechanisms. In East Asia, Momordica charantia L. is used as both food and medicine. It is not clear whether MCP has its unique biological effects. Further study on the difference between MCPs and other food-derived polysaccharides will be helpful to the development and potential application of Momordica charantia L.
Collapse
Affiliation(s)
- Zuomin Hu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yidan Luo
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yuchi Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dandan Qin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feiyan Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feijun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|
10
|
Li T, Liang M, Luo J, Peng X. Metabolites of Clostridium leptum fermenting flaxseed polysaccharide alleviate obesity in rats. Int J Biol Macromol 2024; 264:129907. [PMID: 38325691 DOI: 10.1016/j.ijbiomac.2024.129907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Obesity is a chronic metabolic disease. Our previous research found flaxseed polysaccharide (FP) has an anti-obesity effect, and its anti-obesity effect possibly depends on Clostridium leptum (C. leptum). However, whether the strain takes the role and how it works is still being determined. Here, FP was fermented in vitro by C. leptum and its metabolites were analyzed. Subsequently, the FP fermentation broth of C. leptum (FPF) was given to the obese pseudo sterile rats. The results showed FPF was rich in various metabolites, among which the top ten in relative expression abundance were 3 beta-hydroxy-5-cholestenoate, 7,8-dihydro-3b,6a-dihydroxy-alpha-ionol 9-glucoside, Valyl-Serine, 2-amino-4-[(2-hydroxy-1-oxopropyl)amino]butanoic acid, Agavoside B, glycylproline, lycopersiconolide, armillaritin, Isoleucyl-Hydroxyproline and norethindrone acetate. After intervention with FPF, the weight, abdominal fat ratio, and total fat ratio of rats were significantly reduced and the lipid metabolism of them has been improved. This effect may be achieved by up regulating glucagon-like peptide-1 and adiponectin and further activating the AMP-activated protein kinase signaling pathway. This is the first experimental proof that FP exerts its anti-obesity effects through metabolites from C. leptum fermenting FP, not FP itself and the bacterial cells (debris) of C. leptum. It is also the first demonstration that FPF has a significant anti-obesity effect.
Collapse
Affiliation(s)
- Tianxing Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Minjian Liang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
11
|
Wei B, Peng Z, Zheng W, Yang S, Wu M, Liu K, Xiao M, Huang T, Xie M, Xiong T. Probiotic-fermented tomato alleviates high-fat diet-induced obesity in mice: Insights from microbiome and metabolomics. Food Chem 2024; 436:137719. [PMID: 37839120 DOI: 10.1016/j.foodchem.2023.137719] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Probiotic-fermented plant-based foods are associated with weight loss. Here, we hypothesized probiotic-fermented tomato (FT) as a functional food with potential to alleviate obesity, thus the obesity-alleviating effects and mechanisms of FT on high-fat diet-induced obese mice were explored via biochemical, gut microbiome, and serum metabolomics analysis. The results showed that FT performed better than unfermented tomato in reducing body weight gain and fat accumulation, improving dyslipidemia and glucose homeostasis, and relieving inflammation and adipocytokine dysregulation. Particularly, live probiotic-fermented tomato (LFT) was associated with improved diversity, composition, and structure of gut microbiota, suppressed obesity-related genera growth (e.g., Clostridium, Olsenella, and Mucispirillum), and promoted beneficial genera growth (e.g., Roseburia, Coprococcus, and Oscillospira), which were associated negatively with body weight, TC, TG, and TNF-α levels. Additionally, LFT was associated with positive changes in glycerophospholipids, sphingolipids, unsaturated fatty acids, and amino acids levels. Collectively, as a functional food, LFT possessed potential for obesity alleviation.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Shiyu Yang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Min Wu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Kui Liu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
12
|
Zhang Y, Hu J, Zhong Y, Liu S, Liu L, Mu X, Chen C, Yang S, Li G, Zhang D, Huang X, Yang J, Huang X, Bian S, Nie S. Insoluble/soluble fraction ratio determines effects of dietary fiber on gut microbiota and serum metabolites in healthy mice. Food Funct 2024; 15:338-354. [PMID: 38088096 DOI: 10.1039/d3fo04068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) play pivotal roles in maintaining gut microbiota homeostasis; whether the effects of the different ratios of IDF and SDF are consistent remains unclear. Consequently, we selected SDFs and IDFs from six representative foods (apple, celery, kale, black fungus, oats, and soybeans) and formulated nine dietary fiber recipes composed of IDF and SDF with a ratio from 1 : 9 to 9 : 1 (NDFR) to compare their impact on microbial effects with healthy mice. We discovered that NDFR treatment decreased the abundance of Proteobacteria and the ratio of Firmicutes/Bacteroidetes at the phylum level. The α diversity and relative richness of Parabacteroides and Prevotella at the genus level showed an upward trend along with the ratio of IDF increasing, while the relative abundance of Akkermansia at the genus level and the production of acetic acid and propionic acid exhibited an increased trend along with the ratio of SDF increasing. The relative abundance of Parabacteroides and Prevotella in the I9S1DF group (the ratio of IDF and SDF was 9 : 1) was 1.72 times and 5.92 times higher than that in the I1S9DF group (the ratio of IDF and SDF was 1 : 9), respectively. The relative abundance of Akkermansia in the I1S9DF group was 17.18 times higher than that in the I9S1DF group. Moreover, a high ratio of SDF (SDF reaches 60% or more) enriched the glycerophospholipid metabolism pathway; however, a high ratio of IDF (IDF reaches 80% or more) regulated the tricarboxylic acid cycle. These findings are helpful in the development of dietary fiber supplements based on gut microbiota and metabolites.
Collapse
Affiliation(s)
- Yanli Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shuai Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Liandi Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xinyi Mu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shenji Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Guohao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Duoduo Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xinru Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jinrui Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shuigen Bian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
13
|
Guo D, Deng Y, Yang Q, Li M, Wang X, Wan X, He J, Xu Y, Huang W, Lin G, Xu Y, Sun Y, Zhang R, Chen WH, Liu Z. Symbiotic probiotic communities with multiple targets successfully combat obesity in high-fat-diet-fed mice. Gut Microbes 2024; 16:2420771. [PMID: 39488738 PMCID: PMC11540072 DOI: 10.1080/19490976.2024.2420771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024] Open
Abstract
Probiotics hold great potential for treating metabolic diseases such as obesity. Given the complex and multifactorial nature of these diseases, research on probiotic combination with multiple targets has become popular. Here, we choose four obesity-related targets to perform high-throughput screening, including pancreatic lipase activity, bile salt hydrolase activity, glucagon-like peptide-1 secretion and adipocyte differentiation. Then, we obtained 649 multi-strain combinations with the requirement that each must cover all these targets in principle. After in vitro co-culture and in vivo co-colonization experiments, only four (<0.7%) combinations were selected as symbiotic probiotic communities (SPCs). Next, genome-scale metabolic model analysis revealed that these SPCs showed lower metabolic resource overlap and higher metabolic interaction potential involving amino acid metabolism (Ammonium, L-Lysine, etc.) and energy metabolism (Phosphate, etc.). Further animal experiments demonstrated that all SPCs exhibited a good safety profile and excellent effects in improving obesity and associated glucose metabolism disruptions and depression-like behaviors in high-fat-diet-fed mice. This anti-obesity improvement was achieved through reduced cholesterol level, fat accumulation and inhibited adipocyte differentiation. Taken together, our study provides a new perspective for designing multi-strain combinations, which may facilitate greater therapeutic effect on obesity and other complex diseases in the future.
Collapse
Affiliation(s)
- Dingming Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Deng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianqian Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangfeng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuchun Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junqing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenxin Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Guohua Lin
- Biotechnology Department, Biological Anti-Aging Academy of Wuhan East Lake High-tech Development Zone,Wuhan,China
| | - Ya Xu
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yi Sun
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ruilin Zhang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Guo Q, Li Y, Dai X, Wang B, Zhang J, Cao H. Polysaccharides: The Potential Prebiotics for Metabolic Associated Fatty Liver Disease (MAFLD). Nutrients 2023; 15:3722. [PMID: 37686754 PMCID: PMC10489936 DOI: 10.3390/nu15173722] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is recognized as the most prevalent chronic liver disease globally. However, its pathogenesis remains incompletely understood. Recent advancements in the gut-liver axis offer novel insights into the development of MAFLD. Polysaccharides, primarily derived from fungal and algal sources, abundantly exist in the human diet and exert beneficial effects on glycometabolism, lipid metabolism, inflammation, immune modulation, oxidative stress, and the release of MAFLD. Numerous studies have demonstrated that these bioactivities of polysaccharides are associated with their prebiotic properties, including the ability to modulate the gut microbiome profile, maintain gut barrier integrity, regulate metabolites produced by gut microbiota such as lipopolysaccharide (LPS), short-chain fatty acids (SCFAs), and bile acids (BAs), and contribute to intestinal homeostasis. This narrative review aims to present a comprehensive summary of the current understanding of the protective effects of polysaccharides on MAFLD through their interactions with the gut microbiota and its metabolites. Specifically, we highlight the potential molecular mechanisms underlying the prebiotic effects of polysaccharides, which may give new avenues for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Qin Guo
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Yun Li
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xin Dai
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Bangmao Wang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Jie Zhang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| |
Collapse
|
15
|
You Y, Song H, Wang L, Liu Z, Guo X, Ai C, Song S, Zhu B. Supplement of Caulerpa lentillifera polysaccharide by pre-prandial gavage and free feeding demonstrates differences to prevent obesity and gut microbiota disturbance in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3840-3849. [PMID: 36305093 DOI: 10.1002/jsfa.12298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Caulerpa lentillifera has received extensive attention regarding expansion of its farming and increasing consumption. In our previous study, the structure of C. lentillifera polysaccharide (CLP) was elucidated. However, little information is available about its health effects. In this study, the anti-obesity effect of CLP was investigated by using a high-fat diet-induced obese mice model with two different supplementation methods. RESULTS In vitro simulated digestion results showed that CLP significantly decreased the lipid digestibility and induced the lipid droplets aggregation in the intestinal stage to inhibit the absorption of lipids. As revealed by 16S ribosomal RNA sequencing and non-targeted metabolomics, supplement of CLP by both pre-prandial gavage and free feeding patterns effectively prevented mice obesity via ameliorating intestinal flora disturbance and regulating bile acids circulation metabolism. Of note was that CLP administration had no effect on short-chain fatty acids production, suggesting the anti-obesity effect was uncorrelated with their production. Moreover, pre-prandial administration of CLP had a better anti-obesity effect in lowering body weight and serum lipid levels, but the free feeding resulted in a higher α-diversity of gut microbiota. CONCLUSION The findings of this study indicate that CLP could be a potential anti-obesity nutraceutical and that pre-prandial supplement of CLP may be a better intake method to exhibit its hypolipidemic effect. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying You
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China
| | - Haoran Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
16
|
Li X, Du Y, Xue C, Kang X, Sun C, Peng H, Fang L, Han Y, Xu X, Zhao C. SIRT2 Deficiency Aggravates Diet-Induced Nonalcoholic Fatty Liver Disease through Modulating Gut Microbiota and Metabolites. Int J Mol Sci 2023; 24:8970. [PMID: 37240315 PMCID: PMC10219207 DOI: 10.3390/ijms24108970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chao Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Huanyan Peng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
| |
Collapse
|
17
|
Xiao Q, Huang W, Wu Q, Xu H, Zhang Y, Yang J, Bian S, Tan H, Nie S. The effects of pectin on the gut microbiota and serum metabolites in mice fed with a high fat diet and exposed to low-dose antibiotics. Food Funct 2023; 14:4752-4762. [PMID: 37114890 DOI: 10.1039/d2fo03966d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A sedentary lifestyle, unhealthy diet, and antibiotic use among other environmental factors have been associated with an increased incidence of metabolic disorders and inflammation, as well as gut dysbiosis. Pectin is an edible polysaccharide that exists widely in the cell wall of plants. Our previous study has shown that pectin with various degrees of esterification displayed different effects on preventing acute colitis and regulating the gut microbiome and serum metabolome. This study aimed to further explore the differential effects of pectin with various degrees of esterification on mice simultaneously treated with a high-fat diet and low-dose antibiotics. The results showed that low-esterified pectin L102 improved the biomarkers of metabolic disorders including blood glucose and body weight. The high-esterified pectin H121 and the low-esterified pectin L13 ameliorated inflammatory markers such as superoxide dismutase (SOD). The enrichment of probiotic bacteria such as Lactobacillus by pectin L102, reduction of conditional pathogens such as Klebsiella by pectin L13, and changes in circulating metabolites like L-tryptophan and 3-indoleacrylate by all three types of pectins were detected. These data provide evidence for a differential effect of different types of pectin on the gut microbiota and metabolic health.
Collapse
Affiliation(s)
- Qianhuang Xiao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Wenqi Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Quanyong Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Hedi Xu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Jingrui Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Shuigen Bian
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
18
|
Fermented Wheat Bran Polysaccharides Improved Intestinal Health of Zebrafish in Terms of Intestinal Motility and Barrier Function. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Intestinal barrier dysfunction and gut microbiota disorders have been associated with various intestinal and extraintestinal diseases. Fermented wheat bran polysaccharides (FWBP) are promising natural products for enhancing the growth performance and antioxidant function of zebrafish. The present study was conducted, in order to investigate the effects of FWBP on the intestinal motility and barrier function of zebrafish, which could provide evidence for the further potential of using FWBP as a functional food ingredient in the consideration of gut health. In Experiment 1, the normal or loperamide hydrochloride-induced constipation zebrafish larvae were treated with three concentrations of FWBP (10, 20, 40 μg/mL). In Experiment 2, 180 one month-old healthy zebrafish were randomly divided into three groups (six replicates/group and 10 zebrafish/tank) and fed with a basal diet, 0.05% FWBP, or 0.10% FWBP for eight weeks. The results showed that FWBP treatment for 6 h can reduce the fluorescence intensity and alleviate constipation, thereby promoting the gastrointestinal motility of zebrafish. When compared with control group, zebrafish fed diets containing FWBP showed an increased villus height (p < 0.05), an up-regulated mRNA expression of the tight junction protein 1α, muc2.1, muc5.1, matrix metalloproteinases 9 and defensin1 (p < 0.05), an increased abundance of the phylum Firmicutes (p < 0.05), and a decreased abundance of the phylum Proteobacteria, family Aeromonadaceae, and genus Aeromonas (p < 0.05). In addition, 0.05% FWBP supplementation up-regulated the intestinal mRNA expression of IL-10 and Occludin1 (p < 0.05), enhanced the Shannon and Chao1 indexes (p < 0.05), and increased the abundance of Bacteroidota and Actinobacteriota at the phylum level (p < 0.05). Additionally, 0.1% FWBP supplementation significantly improved the villus height to crypt depth ratio (p < 0.05) and increased the mRNA expression of IL-17 (p < 0.05). These findings reveal that FWBP can promote the intestinal motility and enhance the intestinal barrier function, thus improving the intestinal health of zebrafish.
Collapse
|
19
|
Wen JJ, Li MZ, Chen CH, Hong T, Yang JR, Huang XJ, Geng F, Hu JL, Nie SP. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota. Food Chem 2023; 404:134591. [DOI: 10.1016/j.foodchem.2022.134591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
|
20
|
Wen JJ, Li MZ, Hu JL, Wang J, Wang ZQ, Chen CH, Yang JR, Huang XJ, Xie MY, Nie SP. Different dietary fibers unequally remodel gut microbiota and charge up anti-obesity effects. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
21
|
Jalili M, Nazari M, Magkos F. Fermented Foods in the Management of Obesity: Mechanisms of Action and Future Challenges. Int J Mol Sci 2023; 24:ijms24032665. [PMID: 36768984 PMCID: PMC9916812 DOI: 10.3390/ijms24032665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Fermented foods are part of the staple diet in many different countries and populations and contain various probiotic microorganisms and non-digestible prebiotics. Fermentation is the process of breaking down sugars by bacteria and yeast species; it not only enhances food preservation but can also increase the number of beneficial gut bacteria. Regular consumption of fermented foods has been associated with a variety of health benefits (although some health risks also exist), including improved digestion, enhanced immunity, and greater weight loss, suggesting that fermented foods have the potential to help in the design of effective nutritional therapeutic approaches for obesity. In this article, we provide a comprehensive overview of the health effects of fermented foods and the corresponding mechanisms of action in obesity and obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Mahsa Jalili
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Maryam Nazari
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan JF62+4W5, Iran
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1165 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
22
|
Bora AFM, Kouame KJEP, Li X, Liu L, Sun Y, Ma Q, Liu Y. Development, characterization and probiotic encapsulating ability of novel Momordica charantia bioactive polysaccharides/whey protein isolate composite gels. Int J Biol Macromol 2023; 225:454-466. [PMID: 36410535 DOI: 10.1016/j.ijbiomac.2022.11.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
In this study, a polysaccharide (MP1) with a molecular weight of 38 kDa was isolated from Momordica charantia which contains arabinose, galactose, xylose, and rhamnose. (MP1) was used to formulate composite gels with Whey Protein Isolate (WPI) that were characterized for their functional properties, microstructure, thermal resistance, probiotic encapsulating ability, and potential toward metabolic syndrome (MS). Results showed that the highest complex index was obtained at MP concentration of 2 %. MP-WPIs demonstrated superior (p < 0.05) water holding capacity and emulsifying properties than WPI gels. MP-WPIs also had higher (p < 0.05) thermal stability via TGA and DSC analysis. MP-WPI morphology was observed via SEM whereas protein structure as affected by MP concentration was studied using CLSM. Also, FTIR revealed that MP and WPI bonded mainly through electrostatic, hydrophobic and hydrogen interactions. More, MP-WPIs successfully enhanced probiotic Lactobacillus acidophilus (LA) survival upon freeze-drying with high encapsulation efficiency (98 %) and improved storage stability. MP-WPIs improved LA survival upon digestion suggesting a potential prebiotic activity. Finally, synbiotic formulation LA-MP-WPIs exhibited effective biological activity against MS. Therefore, MP-WPIs is a propitious strategy for effective probiotic gastrointestinal delivery with potential toward MS.
Collapse
Affiliation(s)
- Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Yue Sun
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Yibo Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| |
Collapse
|
23
|
Li X, Huang J, Yun J, Zhang G, Zhang Y, Zhao M, Zabed HM, Ravikumar Y, Qi X. d-Arabitol Ameliorates Obesity and Metabolic Disorders via the Gut Microbiota-SCFAs-WAT Browning Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:522-534. [PMID: 36542783 DOI: 10.1021/acs.jafc.2c06674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
d-Arabitol, which is typically found in mushrooms, lichens, and higher fungi, might play an effective role in alleviating visceral fat accumulation and insulin resistance particularly for its low calorie and glycemic index. However, the regulatory mechanisms of d-arabitol for alleviating obesity and associated metabolic disorders remain poorly understood. This study aimed to investigate and analyze the underlying relationship between d-arabitol-mediated gut microbiota and obesity. The results showed that d-arabitol dramatically ameliorated body weight gain, fat accumulation, and insulin resistance in HFD-fed rats. Likewise, d-arabitol remarkably increased the relative abundance of the genera Blautia, Anaerostipes, and Phascolarctobacterium and decreased the genera Romboutsia and Clostridium_sensu_stricto_1. Furthermore, these alterations in gut microflora increased SCFAs, which in turn indirectly promoted AMPK-PGC-1α-related white adipose tissue (WAT) browning. Therefore, d-arabitol would have the potential to alleviate obesity through the gut microbiota-SCFAs-WAT browning axis. It could be considered as a sugar substitute for the obese population and diabetic patients.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jian Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
24
|
Lu X, Li J, Ma Y, Khan I, Yang Y, Li Y, Wang Y, Liu G, Zhang Z, Yang P, Zhang C. Fermented Angelica sinensis activates Nrf2 signaling and modulates the gut microbiota composition and metabolism to attenuate D-gal induced liver aging. Food Funct 2023; 14:215-230. [PMID: 36477974 DOI: 10.1039/d2fo01637k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Aging is an inevitable physiological process associated with an imbalance in the oxidative defense system. Angelica sinensis, a kind of traditional Chinese medicine (TCM), has anti-oxidant effects and has been considered as a potential supplement in anti-aging treatment. Nevertheless, it has the disadvantages of slow efficacy and long duration of treatment. Fermentation, as an efficient biotechnological approach, is beneficial for improving the nutritional capacity of the material. Fermented TCMs are considered to be more effective. In this study, fermented Angelica sinensis (FAS) and non-fermented Angelica sinensis (NFAS) were used to investigate changes in the chemical constituents. Furthermore, the improvement effect of FAS on D-galactose-induced aging in mice and the potential mechanisms were explored. The results revealed that FAS and NFAS had different constituents under the influence of fermentation, such as 3-phenyllactic acid, L-5-hydroxytryptophan, taxifolin and methyl gallate. These elevated constituents of FAS might help increase the ability of FAS to improve aging. The aging model was established by intraperitoneal injection of D-galactose (2.5 g kg-1 day-1) for 44 days, and FAS (3 g kg-1 day-1) was administered daily by oral gavage after 2 weeks of induction with D-galactose. FAS was observed to significantly ameliorate changes associated with liver aging, such as reduction of MDA, AGEs and 8-OHdG. The contents of pro-inflammatory cytokines containing TNF-α, IL-1β and IL-6 were significantly suppressed in the FAS group. In addition, FAS activated Nrf2 signaling better than NFAS, improved the expression of Nrf2, HO-1, NQO1, GCLC, GCLM and GSS, and further increased the activities of SOD, CAT and other antioxidant enzymes in the liver. Simultaneously, it had a certain repair effect on the liver tissues of mice. The intestinal microbiota analysis showed that FAS could regulate the microbiota imbalance caused by aging, increase the ratio of Firmicutes/Bacteroidetes by 95% and improve the relative abundance of beneficial bacteria related to Nrf2 signaling, such as Lactobacillus. Besides, fecal metabolite analysis identified uric acid as an evidential metabolite, suggesting that FAS participates in purine metabolism to improve aging. Therefore, the regulation of intestinal microbiota and metabolism may be one of the important mechanisms of FAS in alleviating hepatic oxidative stress via the gut-liver axis. The results of this study could provide information for the future development of postbiotic products that may have beneficial effects on the prevention or treatment of aging.
Collapse
Affiliation(s)
- Xuerui Lu
- School of Pharmacy, Lanzhou University, Lanzhou 730020, China.
| | - Junxiang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730020, China.
| | - Yingchun Ma
- Gansu Institute for Drug Control, Lanzhou 730000, China.
| | - Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China. .,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yun Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730020, China.
| | - Yuxi Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China. .,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - YaFei Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730020, China.
| | - GuanLan Liu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China. .,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Zhiming Zhang
- Gansu Provincial Hospital of TCM, Lanzhou 730000, China
| | - Pingrong Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730020, China. .,Gansu Institute for Drug Control, Lanzhou 730000, China.
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China. .,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Li H, Qiu Y, Xie M, Ouyang C, Ding X, Zhang H, Dong W, Xiong Y, Tang X. Momordicine I alleviates isoproterenol-induced cardiomyocyte hypertrophy through suppression of PLA2G6 and DGK-ζ. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:75-84. [PMID: 36575935 PMCID: PMC9806645 DOI: 10.4196/kjpp.2023.27.1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022]
Abstract
This study aimed to observe the protective effect of momordicine I, a triterpenoid compound extracted from momordica charantia L., on isoproterenol (ISO)-induced hypertrophy in rat H9c2 cardiomyocytes and investigate its potential mechanism. Treatment with 10 μM ISO induced cardiomyocyte hypertrophy as evidenced by increased cell surface area and protein content as well as pronounced upregulation of fetal genes including atrial natriuretic peptide, β-myosin heavy chain, and α-skeletal actin; however, those responses were markedly attenuated by treatment with 12.5 μg/ml momordicine I. Transcriptome experiment results showed that there were 381 and 447 differentially expressed genes expressed in comparisons of model/control and momordicine I intervention/model, respectively. GO enrichment analysis suggested that the anti-cardiomyocyte hypertrophic effect of momordicine I may be mainly associated with the regulation of metabolic processes. Based on our transcriptome experiment results as well as literature reports, we selected glycerophospholipid metabolizing enzymes group VI phospholipase A2 (PLA2G6) and diacylglycerol kinase ζ (DGK-ζ) as targets to further explore the potential mechanism through which momordicine I inhibited ISO-induced cardiomyocyte hypertrophy. Our results demonstrated that momordicine I inhibited ISO-induced upregulations of mRNA levels and protein expressions of PLA2G6 and DGK-ζ. Collectively, momordicine I alleviated ISO-induced cardiomyocyte hypertrophy, which may be related to its inhibition of the expression of glycerophospholipid metabolizing enzymes PLA2G6 and DGK-ζ.
Collapse
Affiliation(s)
- Hongming Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yumei Qiu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Mengdie Xie
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Changsheng Ouyang
- Department of Cardiology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Xiaoyun Ding
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Hao Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wei Dong
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yinhua Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China,Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang 330013, China
| | - Xilan Tang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China,Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang 330013, China,Correspondence Xilan Tang, E-mail:
| |
Collapse
|
26
|
Li Y, Chen M, Ma Y, Yang Y, Cheng Y, Ma H, Ren D, Chen P. Regulation of viable/inactivated/lysed probiotic Lactobacillus plantarum H6 on intestinal microbiota and metabolites in hypercholesterolemic mice. NPJ Sci Food 2022; 6:50. [PMID: 36316361 PMCID: PMC9622822 DOI: 10.1038/s41538-022-00167-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Evidence suggests that probiotic interventions reduce non-communicable diseases (NCDs) risk. However, its therapeutic effect and mechanism are still unclear. To evaluate the hypocholesterolemic effect of Lactobacillus plantarum H6 (L.p H6), a new commercial patent strain capable of preventing hypercholesterolemia, and its mechanism in depth, three states of the strain were prepared, namely, viable (vH6), heat-inactivated (iH6), and ultrasonically-lysed (uH6) bacteria cells. The results showed that v/i/uH6 cells could lower serum and liver blood lipid levels, alleviate liver damage and improve glucose tolerance test (GTT) and insulin tolerance test (ITT) indexes. v/i/uH6 cells improved the gut microbial composition and significantly reduced the Firmicutes to Bacteroidetes ratio (F/B ratio) in feces. In particular, Muribaculaceae may be a potential biomarker for effective cholesterol reduction. Also, the recovery of these biochemical indices and gut microbiome was found following fecal microbiota transplantation (FMT) using stool from vH6 treated mice. The v/i/uH6 cells increased the intestinal flora metabolism of vitamins-cofactors, as well as amino acids, while decreasing the relative content of primary bile acids. The Pearson correlation analysis showed that norank_f__Muribaculaceae and Lactobacillus had a negative correlation with blood lipid levels. Overall, v/i/uH6 cells were effective in improving hypercholesterolemia in mice, and this effect was attributed partly to the regulation of intestinal microbiota and metabolites related to lipid metabolism. Our findings provided a theoretical basis for the industrial development of probiotics and postbiotics and the treatment of cholesterol diseases.
Collapse
Affiliation(s)
- Yue Li
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Mengling Chen
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Yuxuan Ma
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Yue Yang
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Ying Cheng
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Huijing Ma
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Dayong Ren
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Ping Chen
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| |
Collapse
|
27
|
Huangshan Maofeng Green Tea Extracts Prevent Obesity-Associated Metabolic Disorders by Maintaining Homeostasis of Gut Microbiota and Hepatic Lipid Classes in Leptin Receptor Knockout Rats. Foods 2022; 11:foods11192939. [PMID: 36230016 PMCID: PMC9562686 DOI: 10.3390/foods11192939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Huangshan Maofeng green tea (HMGT) is one of the most well-known green teas consumed for a thousand years in China. Research has demonstrated that consumption of green tea effectively improves metabolic disorders. However, the underlying mechanisms of obesity prevention are still not well understood. This study investigated the preventive effect and mechanism of long-term intervention of Huangshan Maofeng green tea water extract (HTE) on obesity-associated metabolic disorders in leptin receptor knockout (Lepr−/−) rats by using gut microbiota and hepatic lipidomics data. The Lepr−/− rats were administered with 700 mg/kg HTE for 24 weeks. Our results showed that HTE supplementation remarkably reduced excessive fat accumulation, as well as ameliorated hyperlipidemia and hepatic steatosis in Lepr−/− rats. In addition, HTE increased gut microbiota diversity and restored the relative abundance of the microbiota responsible for producing short chain fatty acids, including Ruminococcaceae, Faecalibaculum, Veillonellaceae, etc. Hepatic lipidomics analysis found that HTE significantly recovered glycerolipid and glycerophospholipid classes in the liver of Lepr−/− rats. Furthermore, nineteen lipid species, mainly from phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and triglycerides (TGs), were significantly restored increases, while nine lipid species from TGs and diglycerides (DGs) were remarkably recovered decreases by HTE in the liver of Lepr−/− rats. Our results indicated that prevention of obesity complication by HTE may be possible through maintaining homeostasis of gut microbiota and certain hepatic lipid classes.
Collapse
|
28
|
He C, Zhang R, Jia X, Dong L, Ma Q, Zhao D, Sun Z, Zhang M, Huang F. Variation in characterization and probiotic activities of polysaccharides from litchi pulp fermented for different times. Front Nutr 2022; 9:993828. [PMID: 36091223 PMCID: PMC9449517 DOI: 10.3389/fnut.2022.993828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
This study investigated the chemical structures and probiotic potential of different polysaccharides (LPs) extracted from the litchi pulp that fermented with Lactobacillus fermentum for different times (i.e., 0–72 h corresponding to LP-0 through LP-72, respectively). Fermentation times affected the yields, total sugar contents, uronic acid contents, molecular weights, and monosaccharide compositions of LPs. The LPs yields and uronic acid contents exhibited irregular trends in association with fermentation time, while total sugar contents decreased, and the molecular weights increased. Particularly, LP-6 contained the highest extraction yields (2.67%), lowest uronic acid contents, and smallest average Mw (104 kDa) (p < 0.05). Moreover, analysis of the monosaccharide composition in the fermented LPs indicated that the proportions of glucose decreased, while arabinose and galacturonic acid proportions increased relative to unfermented LP-0. Further, LP-6 demonstrated the highest growth for Bifidobacterium compared to LP-0, while the other fermentation time led to comparable or worse probiotic promoting activities. These results suggest that lactic acid bacteria fermentation alters the physicochemical properties of litchi polysaccharides, such that suitable fermentation time can enhance their probiotic activities.
Collapse
Affiliation(s)
- Chunmei He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ruifen Zhang
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Xuchao Jia
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lihong Dong
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Qin Ma
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dong Zhao
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- *Correspondence: Mingwei Zhang,
| | - Fei Huang
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- Fei Huang,
| |
Collapse
|
29
|
Fu Q, Huang H, Ding A, Yu Z, Huang Y, Fu G, Huang Y, Huang X. Portulaca oleracea polysaccharides reduce serum lipid levels in aging rats by modulating intestinal microbiota and metabolites. Front Nutr 2022; 9:965653. [PMID: 35983485 PMCID: PMC9378863 DOI: 10.3389/fnut.2022.965653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases characterized by dyslipidemia are common health problems for elderly populations. Dietary fiber intake is inversely associated with the risk of dyslipidemia. This study investigated the effects of Portulaca oleracea polysaccharide (POP) on the intestinal microbiota and its metabolites in aging rats using 16S rRNA sequencing and metabolomics techniques. Our results showed that POPs reduced the ratio of Firmicutes/Bacteroidetes (F/B), relative abundance of Fusobacteria, and levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and gamma-glutamyl transferase (γ-GT) in the serum of aging rats. POP supplementation also reduced 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, and vaccenic acid concentrations in lipids and lipoid-like molecules, while soyasapogenol E and monoacylglycerol (MG) (24:0/0:0/0:0) levels increased. This study demonstrated that POP’s beneficial effects on lipid levels in aging rats might be partially attributable to the modification of gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Qiang Fu
- College of Medicine, Jinggangshan University, Ji'an, China.,Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
| | - Hui Huang
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Aiwen Ding
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Ziqi Yu
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Guiping Fu
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoliu Huang
- College of Medicine, Jinggangshan University, Ji'an, China.,Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
| |
Collapse
|
30
|
Kidney Bean Fermented Broth Alleviates Hyperlipidemic by Regulating Serum Metabolites and Gut Microbiota Composition. Nutrients 2022; 14:nu14153202. [PMID: 35956378 PMCID: PMC9370468 DOI: 10.3390/nu14153202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/26/2022] Open
Abstract
Hyperlipidemia with fat accumulation and weight gain causes metabolic diseases and endangers human body health easily which is accompanied by metabolic abnormalities and intestinal flora disorders. In this study, the kidney bean fermented broth (KBF) was used in rats that were fed a high-fat diet to induce hyperlipidemia in order to subsequently analyse the serum metabolomics and gut microbiota modulatoration. The results show that the contents of the total polyphenols and total flavonoids in the KBF were up three and one times, while energy and carbohydrates decreased. In the HFD-induced hyperlipidemic model, body weight, organ weight, and the level of blood lipids (ALT, AST, TG, TC) were lower in rats treated with KBF than in the controls. Metabonomics indicate that there were significant differences in serum metabolomics between the KBF and the HFD. KBF could significantly improve the glycerophospholipids, taurine, and hypotaurine metabolism and amino acid metabolism of hyperlipidemic rats and then improve the symptoms of hypersterol and fat accumulation in rats. The relative abundance of beneficial bacteria increased while pathogenic bacteria decreased after the intervention of KBF. KBF ameliorates dyslipidemia of HFD-induced hyperlipidemic via modulating the blood metabolism and the intestinal microbiota. Collectively, these findings suggest that KBF could be developed as a functional food for anti-hyperlipidemia.
Collapse
|
31
|
Wei X, Yao J, Wang F, Wu D, Zhang R. Extraction, isolation, structural characterization, and antioxidant activity of polysaccharides from elderberry fruit. Front Nutr 2022; 9:947706. [PMID: 35928842 PMCID: PMC9343709 DOI: 10.3389/fnut.2022.947706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The isolation, purification, and antioxidant activity of polysaccharides extracted from elderberry fruits were studied. Two neutral polysaccharides (EFP-0 and EFP-1) and three acidic polysaccharides (EFP-2, EFP-3, and EFP-4) were isolated from elderberry. EFP-0, EFP-1, EFP-2, EFP-3, and EFP-4 all contain arabinose, galactose, glucose, and mannose, with molecular weights of 1.7981 × 106, 7.0523 × 106, 7.7638 × 106, 4.3855 × 105, and 7.3173 × 105 Da, respectively. Structural characterization showed that the backbone of EFP-2 consisted of →4)-Manp (1→4)-β-D-Glcp (1→ and →4)-β-D-Glcp (1→5)-α-L-Araf (1→units, and T-α-L-Araf (1→ and T-β-D-Galp (1→ residues were detected by methylation analysis and NMR analysis. In addition, the MTT assay and zebrafish oxidative damage assay showed that EFP-2 had a protective effect on H2O2-damaged RAW264.7 cells in a dose-dependent manner, and zebrafish with the addition of EFP-2 would have low levels of ROS in vivo which showed significant antioxidant activity. Therefore, the results showed that the elderberry polysaccharides have antioxidant activity and can be used as potential antioxidants in functional foods.
Collapse
Affiliation(s)
- Xinxin Wei
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Junxiu Yao
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
| | - Fangzhou Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Dejun Wu
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
- *Correspondence: Dejun Wu,
| | - Rentang Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Rentang Zhang,
| |
Collapse
|
32
|
He H, Sun Y, Zhang S, Zhang H, Su W, Guo Z, Zhang Y, Wen J, Li X, Hu J, Nie S. Arabinogalactan,
Bifidobacterium longum
, and
Faecalibacterium prausnitzii
improve insulin resistance in high‐fat diet‐induced C57BL/6J mice. EFOOD 2022. [DOI: 10.1002/efd2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Huijun He
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Wenwen Su
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Zheyu Guo
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Xiajialong Li
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
33
|
Fermented Myriophyllum aquaticum and Lactobacillus plantarum Affect the Distribution of Intestinal Microbial Communities and Metabolic Profile in Mice. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research explores the effects of fermented Myriophyllum aquaticum (F) and Lactobacillus plantarum BW2013 (G) as new feed additives on the gut microbiota composition and metabolic profile of mice. Crude protein (p = 0.045), lipid (p = 0.000), and ash (p = 0.006) contents in Myriophyllum aquaticum (N) were improved, whereas raw fiber (p = 0.031) content was decreased after solid-state fermentation by G. Mice were fed with no additive control (CK), 10%N (N), 10%N + G (NG), 10%F (F), and 10%F + G (FG). High-throughput sequencing results showed that, compared with the CK group, Parabacteroides goldsteinii was increased in treatment groups and that Lactobacillus delbrueckii, Bacteroides vulgatus, and Bacteroides coprocola were increased in the F and FG groups. Bacteroides vulgatus and Bacteroides coprocola were increased in the F group compared with the N group. Metabolomic results showed that vitamin A, myricetin, gallic acid, and luteolin were increased in the F group compared with the N group. Reduction in LPG 18:1 concentration in the N and F groups could be attenuated or even abolished by supplementation with G. Furthermore, 9-oxo-ODA was upregulated in the FG group compared with the F group. Collectively, N, F, and G have beneficial effects on gut microbiota and metabolic profile in mice, especially intake of FG.
Collapse
|
34
|
Sun CY, Zheng ZL, Chen CW, Lu BW, Liu D. Targeting Gut Microbiota With Natural Polysaccharides: Effective Interventions Against High-Fat Diet-Induced Metabolic Diseases. Front Microbiol 2022; 13:859206. [PMID: 35369480 PMCID: PMC8965082 DOI: 10.3389/fmicb.2022.859206] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Unhealthy diet, in particular high-fat diet (HFD) intake, can cause the development of several metabolic disorders, including obesity, hyperlipidemia, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS). These popular metabolic diseases reduce the quality of life, and induce premature death worldwide. Evidence is accumulating that the gut microbiota is inextricably associated with HFD-induced metabolic disorders, and dietary intervention of gut microbiota is an effective therapeutic strategy for these metabolic dysfunctions. Polysaccharides are polymeric carbohydrate macromolecules and sources of fermentable dietary fiber that exhibit biological activities in the prevention and treatment of HFD-induced metabolic diseases. Of note, natural polysaccharides are among the most potent modulators of the gut microbiota composition. However, the prebiotics-like effects of polysaccharides in treating HFD-induced metabolic diseases remain elusive. In this review, we introduce the critical role of gut microbiota human health and HFD-induced metabolic disorders. Importantly, we review current knowledge about the role of natural polysaccharides in improving HFD-induced metabolic diseases by regulating gut microbiota.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | | | - Cun-Wu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Bao-Wei Lu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| |
Collapse
|
35
|
Liao PY, Lo HY, Liu IC, Lo LC, Hsiang CY, Ho TY. A gastro-resistant peptide from Momordica charantia improves diabetic nephropathy in db/ db mice via its novel reno-protective and anti-inflammatory activities. Food Funct 2022; 13:1822-1833. [PMID: 35083999 DOI: 10.1039/d1fo02788c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy (DN), a principal diabetic microvascular complication, is a chronic inflammatory immune disorder. A gastro-resistant peptide mcIRBP-9 from Momordica charantia has shown modulation of blood glucose homeostasis in diabetic mice. Here we conducted a long-term experiment to evaluate the therapeutic effects and mechanisms of mcIRBP-9 on DN. Type 2 diabetic mice (db/db mice) were orally given mcIRBP-9 once daily for 12 consecutive weeks. The amelioration of DN was evaluated by renal function indexes, vascular leakage, and pathological lesions. Possible effective mechanisms of mcIRBP-9 on DN were analyzed by gene expression profiles. A pharmacokinetic study in rats was carried out to evaluate the oral bioavailability of mcIRBP-9. Our data showed that mcIRBP-9 was able to enter systemic circulation in rats after oral administration. In comparison with mock, long-term administration of mcIRBP-9 significantly decreased blood glucose (572.25 ± 1.55 mg dL-1vs. 213.50 ± 163.39 mg dL-1) and HbA1c levels (13.58 ± 0.30% vs. 8.23 ± 2.98%) and improved the survival rate (85.7% vs. 100%) in diabetic mice. mcIRBP-9 ameliorated DN by reducing renal vascular leakage and histopathological changes. mcIRBP-9 altered the pathways involved in inflammatory and immune responses, and the nuclear factor-κB played a central role in the regulation of mcIRBP-9-affected pathways. Moreover, mcIRBP-9 improved the inflammatory characteristic of DN in diabetic and non-diabetic mice. In conclusion, mcIRBP-9 displayed a novel anti-inflammatory activity and exhibited a reno-protective ability in addition to controlling the blood glucose and HbA1c levels. These findings suggested the role of mcIRBP-9 from M. charantia as a nutraceutical agent for diabetes and subsequent DN.
Collapse
Affiliation(s)
- Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500209, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan.
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan.
| | - Lun-Chien Lo
- School of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung 404333, Taiwan.
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
36
|
Liao PY, Lo HY, Liu IC, Lo LC, Hsiang CY, Ho TY. The novel anti-inflammatory activity of mcIRBP from Momordica charantia is associated with the improvement of diabetic nephropathy. Food Funct 2022; 13:1268-1279. [DOI: 10.1039/d1fo03620c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy is an inflammatory immune disorder accompanying diabetes.
Collapse
Affiliation(s)
- Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Lun-Chien Lo
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung 40402, Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
37
|
Sarkar D, Christopher A, Shetty K. Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Front Endocrinol (Lausanne) 2021; 12:727503. [PMID: 35116002 PMCID: PMC8805174 DOI: 10.3389/fendo.2021.727503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Plant-based foods containing phenolic bioactives have human health protective functions relevant for combating diet and lifestyle-influenced chronic diseases, including type 2 diabetes (T2D). The molecular structural features of dietary phenolic bioactives allow antioxidant functions relevant for countering chronic oxidative stress-induced metabolic breakdown commonly associated with T2D. In addition to antioxidant properties, phenolic bioactives of diverse plant foods have therapeutic functional activities such as improving insulin sensitivity, reducing hepatic glucose output, inhibiting activity of key carbohydrate digestive enzymes, and modulating absorption of glucose in the bloodstream, thereby subsequently improving post-prandial glycemic control. These therapeutic functional properties have direct implications and benefits in the dietary management of T2D. Therefore, plant-based foods that are rich in phenolic bioactives are excellent dietary sources of therapeutic targets to improve overall glycemic control by managing chronic hyperglycemia and chronic oxidative stress, which are major contributing factors to T2D pathogenesis. However, in studies with diverse array of plant-based foods, concentration and composition of phenolic bioactives and their glycemic control relevant bioactivity can vary widely between different plant species, plant parts, and among different varieties/genotypes due to the different environmental and growing conditions, post-harvest storage, and food processing steps. This has allowed advances in innovative strategies to screen and optimize whole and processed plant derived foods and their ingredients based on their phenolic bioactive linked antioxidant and anti-hyperglycemic properties for their effective integration into T2D focused dietary solutions. In this review, different pre-harvest and post-harvest strategies and factors that influence phenolic bioactive-linked antioxidant and anti-hyperglycemic properties in diverse plant derived foods and derivation of extracts with therapeutic potential are highlighted and discussed. Additionally, novel bioprocessing strategies to enhance bioavailability and bioactivity of phenolics in plant-derived foods targeting optimum glycemic control and associated T2D therapeutic benefits are also advanced.
Collapse
|