1
|
Wang Z, Liu L, Jiang H, Li L, Yang M, Dai J, Tao L, Sheng J, Tian Y. Glycated walnut meal peptide‑calcium chelates (COS-MMGGED-Ca): Preparation, characterization, and calcium absorption-promoting. Food Chem 2025; 462:140975. [PMID: 39197240 DOI: 10.1016/j.foodchem.2024.140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
This study isolated a novel peptide MMGGED with strong calcium-binding capacity from defatted walnut meal and synthesized a novel peptide‑calcium chelate COS-MMGGED-Ca with high stability via glycation. Structural characterization and computer simulation identified binding sites, while in vitro digestion stability and calcium transport experiments explored the chelate's properties. Results showed that after glycation, COS-MMGGED bound Ca2+ with 88.75 ± 1.75 %, mainly via aspartic and glutamic acids. COS-MMGGED-Ca released Ca2+ steadily (60.27 %), with thermal denaturation temperature increased by 18 °C and 37 °C compared to MMGGED-Ca, indicating good processing performance. Furthermore, COS-MMGGED significantly enhanced Ca2+ transport across Caco-2 monolayers, 1.13-fold and 1.62-fold higher than CaCl2 and MMGGED, respectively, at 240 h. These findings prove glycation enhances structural properties, stability, calcium loading, and transport of peptide‑calcium chelates, providing a scientific basis for developing novel efficient calcium supplements and high-value utilization of walnut meal.
Collapse
Affiliation(s)
- Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Litong Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Haifen Jiang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China.
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Puer University, Puer 665000, China.
| |
Collapse
|
2
|
Xu X, Zhao D, Li C, Yang H, Lu Q, Zhu M, Bao Y, Chen C. Protective effect of water-soluble nervonic acid micro-powder coated with chitosan oligosaccharide and silk fibroin on hippocampal neuronal HT22 cells. Int J Biol Macromol 2024; 282:136967. [PMID: 39490490 DOI: 10.1016/j.ijbiomac.2024.136967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Nervonic acid (NA) is an extremely long chain monounsaturated fatty acid that plays a crucial biological role in brain development and repair. However, its low solubility reduced bioavailability and limited its applications. In this study, spherical water-soluble nervonic acid composite micro-powder (NA-WM) was constructed by layer-by-layer self-assembly technology under electrostatic interaction and hydrogen bond, in which electronegative NA was used as the core material, and electropositive COS (Chitosan oligosaccharide) with neuroprotective properties and electronegative SF (Silk fibroin) with biocompatibility and anti-inflammatory synergism were used as the wall material. In the preparation process, the electronegative NA was first combined with electropositive COS by antisolvent method, and then the electropositive COS-NA complex was encapsulated with electronegative SF to form NA-WM. The optimal preparation conditions were screened and optimized via single-factor and BBD method. Under the optimum conditions, the average particle size of NA-WM was 420 ± 35 nm. The results of TGA (Thermogravimetric), SEM (Scanning electron microscopy), and FTIR (Fourier transform infrared spectroscopy) confirmed that NA-WM had good thermal stability and spherical-defined layer-to-layer structure. Additionally, at pH 1.5, the NA release rate of NA-WM was as high as 89.54 % within 2.5 h. Through measuring the levels of MDA (Malondialdehyde), CAT (Catalase), SOD (Superoxide dismutase), GSH-Px (Glutathione peroxidase), and LDH (Lactate dehydrogenase), as well as flow cytometry and SEM analysis, it was confirmed that NA-WM could protect Aβ1-42-induced HT22 by inhibiting oxidative stress and reducing mitochondrial membrane potential. This study provided data support for the development and application of NA.
Collapse
Affiliation(s)
- Xiaojie Xu
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dandan Zhao
- School of Forestry, Food science and engineering, Northeast Forestry University, Harbin 150040, China
| | - Chenglin Li
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Huiying Yang
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Lu
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Minghua Zhu
- Harbin Vocational & Technical College, Harbin 150040, China.
| | - Yihong Bao
- School of Forestry, Food science and engineering, Northeast Forestry University, Harbin 150040, China
| | - Chunxia Chen
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Liu P, Chen W, Wu D, Zhang Z, Li W, Yang Y. The preparation, modification and hepatoprotective activity of chitooligosaccharides: A review. Int J Biol Macromol 2024; 277:134489. [PMID: 39111493 DOI: 10.1016/j.ijbiomac.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Chitooligosaccharides (COS) has attracted increasing attention due to the various promising bioactivities, tremendous potential in agricultural, environmental nutritional and functional food fields. COS as the major degradation product from chitosan or chitin is prepared via enzymatic, chemical and physical methods. Further obtained COS generally possesses different structural characteristics, such as molecular weight, degree of acetylation and degree of polymerization. Innovations into COS modification has also broadened application of COS in nutrition as well as in agricultural safety. Due to the affinity between structure and bioactivity, diversity of structural characteristics endows COS with various bioactivities like antitumor, antioxidant and anti-inflammatory effects, especially hepatoprotective activity. Therefore, the present review narrates the recent developments in COS physicochemical properties, while paying considerable attention to preparation strategies of COS and their advantages and disadvantages. Moreover, the modification of COS is also discussed including alkylation, quaternization and sulfation, herein the structure-activity relationship of COS was highlighted. Additionally, we summarize the latest research on hepatoprotective activity and mechanisms of COS. Eventually, the future directions of research on COS were discussed, which would provide a new appreciation for the future use of COS.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China.
| |
Collapse
|
4
|
Wang Y, Zhao Y, Li J, Zong H, Chen Y, Zhou J, Li X, Ye X. Characterization of a Novel Acid-Stable Chitosanase from Lentinula edodes Suitable for Chitooligosaccharide Preparation. Foods 2024; 13:3127. [PMID: 39410162 PMCID: PMC11475730 DOI: 10.3390/foods13193127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
As high-value chitosan derivatives, chitooligosaccharides (COSs) with biodegradable, biocompatible, nontoxic, antimicrobial, and antioxidant activities have been widely applied in food-related fields. Chitosanases can hydrolyze chitosan to produce COSs. Herein, a chitosanase (LeCho1) from Lentinula edodes was successfully expressed in Escherichia coli and was then purified and characterized. LeCho1 had a low sequence identity with other chitosanases reported from the GH75 family. The recombinant protein showed a molecular mass of 27 kDa on SDS-PAGE. LeCho1 preferentially hydrolyzed chitosan with a high degree of deacetylation (DDA) and exhibited maximal activity (71.88 U/mg) towards 95% DDA chitosan at pH 3.0 and 50 °C. It possessed good stability at pH 2.0-6.0 and temperatures below 45 °C. Its hydrolytic activity was remarkably enhanced by the metal ion Mn2+ at 1 mM, while it was totally inhibited by 1 mM Fe3+ or 10 mM EDTA. Its Km and Vmax values were 0.04 μM and 76.81 μmol·min-1·mg-1, respectively, indicating good substrate affinity. LeCho1 degraded chitosan into COSs with degrees of polymerization (DPs) of 2-5, while it had no action on COSs with DPs of less than 5, revealing its endo-chitosanase activity. This study proved that chitosanase LeCho1 is a promising candidate in the industrial preparation of COSs due to its excellent properties.
Collapse
Affiliation(s)
- Yanxin Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (Y.W.)
| | - Yujie Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (Y.W.)
| | - Jingchen Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (Y.W.)
| | - Haobo Zong
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (Y.W.)
| | - Ying Chen
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (Y.W.)
| | - Jinyu Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (Y.W.)
| | - Xinlian Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (Y.W.)
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Hassan SM, Morsy JM, Hassanin HM, Othman ES, Mostafa MA. New synthetic chitosan Schiff bases bearing pyranoquinolinone or benzonaphthyridine and their silver nanoparticles derivatives with potential activity as antioxidant and molecular docking study for EGFR inhibitors. RSC Adv 2024; 14:29919-29933. [PMID: 39309650 PMCID: PMC11413560 DOI: 10.1039/d4ra05117c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
In this study, two new carboxaldehydes 3, and 4 were synthesized by Vilsmeier-Haack formylation of 6-butyl-benzo[h][1,6]naphthyridine-2,5-dione 2 and 6-butyl-pyrano[3,2-c]quinolinone 1, respectively. Structures of newly synthesized compounds were achieved by IR, 1H NMR, 13C NMR, mass techniques, and elemental analyses. The two synthesized carboxaldehydes 3 and 4 were used as precursors for the synthesis of two new chitosan-based Schiff bases, CS1 and CS2. The new chitosan Schiff bases were grafted on silver nanoparticles, providing CS1/Ag and CS2/Ag structures. However, CS1 and CS2 and their silver nanoparticles were characterized by FT-IR, XRD, SEM-EDX, XRF, TEM, TGA, and DSC. The target compounds CS1, CS2, CS1/Ag, and CS2/Ag were assessed as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH%). The results showed that CS1 and CS2 had a better ability to scavenge DPPH radical than its unmodified chitosan. CS1/Ag and CS2/Ag, combining the unique properties of silver and Schiff bases, displayed excellent antioxidant activity (IC50, 59.13, and 32.54 μg mL-1, respectively). In addition, the previous compounds were tested in vitro for inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase using the EGFR kinase assay kit (Cat. #40321). In particular, compound CS1/Ag displayed potent inhibitory activity towards EGFR with IC50 20.45 μg mL-1 compared to reference drug sorafenib (IC50 = 0.76 μg mL-1). The bioactivity of new chitosan Schiff bases was studied by molecular docking to see how they bind with the EGFR receptor. The results implied that CS1 has a higher binding energy than CS2 and CS regarding EGFR kinase, which agreed with the results obtained from the experimental EGFR inhibition assay.
Collapse
Affiliation(s)
- Shrouk M Hassan
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Jehan M Morsy
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Hany M Hassanin
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Elham S Othman
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Mai A Mostafa
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| |
Collapse
|
6
|
Jia Z, Su H, Zhao Q, Wang S, Sun J, Mao X. Structure-Assisted Design of Chitosanase Product Specificity for the Production of High-Degree Polymerization Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19081-19092. [PMID: 39105795 DOI: 10.1021/acs.jafc.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Chitosanases are valuable enzymatic tools in the food industry for converting chitosan into functional chitooligosaccharides (COSs). However, most of the chitosanases extensively characterized produced a low degree of polymerization (DP) COSs (DP = 1-3, LdpCOSs), indicating an imperative for enhancements in the product specificity for the high DP COS (DP >3, HdpCOSs) production. In this study, a chitosanase from Methanosarcina sp. 1.H.T.1A.1 (OUC-CsnA4) was cloned and expressed. Analysis of the enzyme-substrate interactions and the subsite architecture of the OUC-CsnA4 indicated that a Ser49 mutation could modify its interaction pattern with the substrate, potentially enhancing product specificity for producing HdpCOSs. Site-directed mutagenesis provided evidence that the S49I and S49P mutations in OUC-CsnA4 enabled the production of up to 24 and 26% of (GlcN)5 from chitosan, respectively─the wild-type enzyme was unable to produce detectable levels of (GlcN)5. These mutations also altered substrate binding preferences, favoring the binding of longer-chain COSs (DP >5) and enhancing (GlcN)5 production. Furthermore, molecular dynamics simulations and molecular docking studies underscored the significance of +2 subsite interactions in determining the (GlcN)4 and (GlcN)5 product specificity. These findings revealed that the positioning and interactions of the reducing end of the substrate within the catalytic cleft are crucial factors influencing the product specificity of chitosanase.
Collapse
Affiliation(s)
- Zhenrong Jia
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Haipeng Su
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Qiang Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Shujia Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
7
|
Li Y, Wu L, Yong Y, Niu X, Gao Y, Zhou Q, Xie H, Liu X, Li Y, Yu Z, Abd El-Aty AM, Ju X. Enhancing gut barrier integrity: Upregulation of tight junction proteins by chitosan oligosaccharide through the ERK1/2 signaling pathway. Nutrition 2024; 124:112428. [PMID: 38663127 DOI: 10.1016/j.nut.2024.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 06/17/2024]
Abstract
OBJECTIVES This study aimed to explore the protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharide (LPS)-induced inflammatory responses in IEC-6 cells and dextran sodium sulfate (DSS)-induced colitis in mice. METHODS The cell inflammation model was constructed by LPS in vitro and enteritis model by DSS in vivo. RESULTS Following LPS exposure, IEC-6 cell proliferation significantly decreased, epithelial cell integrity was compromised, and TNF-α and IL-1β levels were increased. However, COS pretreatment reversed these changes. In vivo, DSS-treated mice exhibited evident pathological alterations, including heightened inflammatory levels and significantly decreased expression of tight junction proteins and critical proteins in the Mitogen activated proteins kinase signaling pathway. Nevertheless, COS administration notably reduced inflammatory levels and increased the expression of tight junction proteins and key proteins in the Mitogen activated proteins kinase signaling pathway. CONCLUSIONS Our findings suggest that COS safeguards gut barrier integrity by upregulating tight junction proteins through the ERK1/2 signaling pathway. Therefore, COS has emerged as a promising candidate for novel drug interventions against inflammatory bowel disease.
Collapse
Affiliation(s)
- Yin Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Lianyun Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xueting Niu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Yuan Gao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Qiu Zhou
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Huili Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China.
| |
Collapse
|
8
|
Pan D, Xiao P, Li F, Liu J, Zhang T, Zhou X, Zhang Y. High Degree of Polymerization of Chitin Oligosaccharides Produced from Shrimp Shell Waste by Enrichment Microbiota Using Two-Stage Temperature-Controlled Technique of Inducing Enzyme Production and Metagenomic Analysis of Microbiota Succession. Mar Drugs 2024; 22:346. [PMID: 39195462 DOI: 10.3390/md22080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
The direct enzymatic conversion of untreated waste shrimp and crab shells has been a key problem that plagues the large-scale utilization of chitin biological resources. The microorganisms in soil samples were enriched in two stages with powdered chitin (CP) and shrimp shell powder (SSP) as substrates. The enrichment microbiota XHQ10 with SSP degradation ability was obtained. The activities of chitinase and lytic polysaccharide monooxygenase of XHQ10 were 1.46 and 54.62 U/mL. Metagenomic analysis showed that Chitinolyticbacter meiyuanensis, Chitiniphilus shinanonensis, and Chitinimonas koreensis, with excellent chitin degradation performance, were highly enriched in XHQ10. Chitin oligosaccharides (CHOSs) are produced by XHQ10 through enzyme induction and two-stage temperature control technology, which contains CHOSs with a degree of polymerization (DP) more significant than ten and has excellent antioxidant activity. This work is the first study on the direct enzymatic preparation of CHOSs from SSP using enrichment microbiota, which provides a new path for the large-scale utilization of chitin bioresources.
Collapse
Affiliation(s)
- Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Fuyi Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Jinze Liu
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Tengfei Zhang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
9
|
Vadalà R, De Maria L, De Pasquale R, Di Salvo E, Lo Vecchio G, Di Bella G, Costa R, Cicero N. Development of a Chitosan-Based Film from Shellfish Waste for the Preservation of Various Cheese Types during Storage. Foods 2024; 13:2055. [PMID: 38998559 PMCID: PMC11241246 DOI: 10.3390/foods13132055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The global concern about the use of disposable plastics has fed the research on sustainable packaging for food products. Among the virtuous materials, chitosan emerges as a valid alternative to conventional polyethylene films because of its abundance in nature. In this work, a novel film for food wrapping was developed by exploiting shellfish waste according to a vision of circular economy. Compared to previous studies, here, novel ingredients, such as polyvinyl alcohol (PVA), fibroin, and essential oils, were used in a synergistic combination to functionally postpone cheese deterioration. The fermentative procedure applied for the obtainment of chitin contributes to filling the existing gap in the literature, since the majority of studies are based on the chemical pathways that dramatically impact the environment. After pretreatment, the shrimp shell waste (SSW) was fermented through two bacterial strains, namely Lactobacillus plantarum and Bacillus subtilis. A deacetylation step in an alkaline environment transformed chitin into chitosan, yielding 78.88 g/kg SWW. Four different film formulations were prepared, all containing chitosan with other ingredients added in order of decreasing complexity from the A to D groups. The novel films were tested with regard to their physico-mechanical and antioxidant properties, including the tensile strength (12.10-23.25 MPa), the elongation at break (27.91-46.12%), the hardness (52-71 Shore A), the film thickness (308-309 μm), and the radical scavenging activity (16.11-76.56%). The performance as a cling film was tested on two groups of cheese samples: the control (CTR), wrapped in conventional polyethylene (PE) film; treated (TRT), wrapped in the chitofilm formulation deemed best for its mechanical properties. The volatiles entrapped into the headspace were investigated by means of the SPME-GC technique. The results varied across soft, Camembert, and semi-hard cheeses, indicating a growing abundance of volatiles during the conservation of cheese. The bacterial growth trends for mesophilic, enterobacteriaceae, and lactic acid bacteria were expressed as the mean colony forming units (CFU)/mL for each type of cheese at different sampling times (day 2, day 8, and day 22): the highest load was quantified as 8.2 × 106 CFU/mL at day 22 in the CTR Camembert cheese. The TRT samples generally exhibited inhibitory activity comparable to or lower than that observed in the CTR samples. The sensory analysis revealed distinctions in cheese taste between the TRT and CTR groups.
Collapse
Affiliation(s)
- Rossella Vadalà
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Laura De Maria
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | | | - Eleonora Di Salvo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Giovanna Lo Vecchio
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Giuseppa Di Bella
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Rosaria Costa
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
| | - Nicola Cicero
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, 98168 Messina, Italy; (R.V.); (L.D.M.); (E.D.S.); (G.L.V.); (G.D.B.); (N.C.)
- Science4life S.r.l. Start Up, 98168 Messina, Italy;
| |
Collapse
|
10
|
Triunfo M, Guarnieri A, Ianniciello D, Coltelli MB, Salvia R, Scieuzo C, De Bonis A, Falabella P. A comprehensive characterization of Hermetia illucens derived chitosan produced through homogeneous deacetylation. Int J Biol Macromol 2024; 271:132669. [PMID: 38801847 DOI: 10.1016/j.ijbiomac.2024.132669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The increasing demand for chitin and chitosan is driving research to explore alternative sources to crustaceans. Insects, particularly bioconverters as Hermetia illucens, are promising substitutes as they process food industry waste into valuable molecules, including chitin. Chitosan can be produced by chitin deacetylation: hot deacetylation to obtain a heterogeneous chitosan, the commonly produced, and cold deacetylation to obtain a homogeneous chitosan, not widely available. The two different treatments lead to a different arrangement of the amine and acetyl groups in the chitosan structure, affecting its molecular weight, deacetylation degree, and biological activity. This is the first report on the production and chemical-physical and biological characterization of homogenous chitosan derived from H. illucens larvae, pupal exuviae, and adults. This work, in addition to the report on heterogeneous chitosan by our research group, completes the overview of H. illucens chitosan. The yield values obtained for homogeneous chitosan from pupal exuviae (3 and 7 %) are in the range of insect (2-8 %) and crustaceans (4-15 %) chitosan. The evaluation of the antioxidant activity and antimicrobial properties against Gram-negative (Escherichia coli) and Gram-positive (Micrococcus flavus) bacteria confirmed the great versatility of H. illucens chitosan for biomedical and industrial applications and its suitability as an alternative source to crustaceans.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Dolores Ianniciello
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa - Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Angela De Bonis
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
11
|
Li B, Cui J, Xu T, Xu Y, Long M, Li J, Liu M, Yang T, Du Y, Xu Q. Advances in the preparation, characterization, and biological functions of chitosan oligosaccharide derivatives: A review. Carbohydr Polym 2024; 332:121914. [PMID: 38431416 DOI: 10.1016/j.carbpol.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Chitosan oligosaccharide (COS), which represent the positively charged basic amino oligosaccharide in nature, is the deacetylated and degraded products of chitin. COS has become the focus of intensive scientific investigation, with a growing body of practical and clinical studies highlighting its remarkable health-enhancing benefits. These effects encompass a wide range of properties, including antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities. With the rapid advancements in chemical modification technology for oligosaccharides, many COS derivatives have been synthesized and investigated. These newly developed derivatives possess more stable chemical structures, improved biological activities, and find applications across a broader spectrum of fields. Given the recent interest in the chemical modification of COS, this comprehensive review seeks to consolidate knowledge regarding the preparation methods for COS derivatives, alongside discussions on their structural characterization. Additionally, various biological activities of COS derivatives have been discussed in detail. Lastly, the potential applications of COS derivatives in biomedicine have been reviewed and presented.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jingchun Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Tiantian Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yunshu Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingxin Long
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiaqi Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingzhi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ting Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
12
|
Sharma S, Kishen A. Bioarchitectural Design of Bioactive Biopolymers: Structure-Function Paradigm for Diabetic Wound Healing. Biomimetics (Basel) 2024; 9:275. [PMID: 38786486 PMCID: PMC11117869 DOI: 10.3390/biomimetics9050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic wounds such as diabetic ulcers are a major complication in diabetes caused by hyperglycemia, prolonged inflammation, high oxidative stress, and bacterial bioburden. Bioactive biopolymers have been found to have a biological response in wound tissue microenvironments and are used for developing advanced tissue engineering strategies to enhance wound healing. These biopolymers possess innate bioactivity and are biodegradable, with favourable mechanical properties. However, their bioactivity is highly dependent on their structural properties, which need to be carefully considered while developing wound healing strategies. Biopolymers such as alginate, chitosan, hyaluronic acid, and collagen have previously been used in wound healing solutions but the modulation of structural/physico-chemical properties for differential bioactivity have not been the prime focus. Factors such as molecular weight, degree of polymerization, amino acid sequences, and hierarchical structures can have a spectrum of immunomodulatory, anti-bacterial, and anti-oxidant properties that could determine the fate of the wound. The current narrative review addresses the structure-function relationship in bioactive biopolymers for promoting healing in chronic wounds with emphasis on diabetic ulcers. This review highlights the need for characterization of the biopolymers under research while designing biomaterials to maximize the inherent bioactive potency for better tissue regeneration outcomes, especially in the context of diabetic ulcers.
Collapse
Affiliation(s)
- Shivam Sharma
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
13
|
Wang Z, Zhao Y, Yang M, Wang Y, Wang Y, Shi C, Dai T, Wang Y, Tao L, Tian Y. Glycated Walnut Meal Peptide-Calcium Chelates: Preparation, Characterization, and Stability. Foods 2024; 13:1109. [PMID: 38611413 PMCID: PMC11011802 DOI: 10.3390/foods13071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Finding stable and bioavailable calcium supplements is crucial for addressing calcium deficiency. In this study, glycated peptide-calcium chelates (WMPHs-COS-Ca) were prepared from walnut meal protein hydrolysates (WMPHs) and chitosan oligosaccharides (COSs) through the Maillard reaction, and the structural properties and stability of the WMPHs-COS-Ca were characterized. The results showed that WMPHs and COSs exhibited high binding affinities, with a glycation degree of 64.82%. After glycation, Asp, Lys, and Arg decreased by 2.07%, 0.46%, and 1.06%, respectively, which indicated that these three amino acids are involved in the Maillard reaction. In addition, compared with the WMPHs, the emulsifying ability and emulsion stability of the WMPHs-COS increased by 10.16 mg2/g and 52.73 min, respectively, suggesting that WMPHs-COS have better processing characteristics. After chelation with calcium ions, the calcium chelation rate of peptides with molecular weights less than 1 kDa was the highest (64.88%), and the optimized preparation conditions were 5:1 w/w for WMPH-COS/CaCl2s, with a temperature of 50 °C, a chelation time of 50 min, and a pH of 7.0. Scanning electron microscopy showed that the "bridging role" of WMPHs-COS changed to a loose structure. UV-vis spectroscopy and Fourier transform infrared spectrometry results indicated that the amino nitrogen atoms, carboxyl oxygen atoms, and carbon oxygen atoms in WMPHs-COS chelated with calcium ions, forming WMPHs-COS-Ca. Moreover, WMPHs-COS-Ca was relatively stable at high temperatures and under acidic and alkaline environmental and digestion conditions in the gastrointestinal tract, indicating that WMPHs-COS-Ca have a greater degree of bioavailability.
Collapse
Affiliation(s)
- Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Ye Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Yuanli Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Yue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Tianyi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Yifan Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Puer University, Puer 665000, China
| |
Collapse
|
14
|
Li N, Lu Y, Sheng X, Cao Y, Liu W, Zhou Z, Jiang L. Recent Progress in Enzymatic Preparation of Chitooligosaccharides with a Single Degree of Polymerization and Their Potential Applications in the Food Sector. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04876-9. [PMID: 38411934 DOI: 10.1007/s12010-024-04876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Chitosan oligosaccharides (COS), derived from chitin, have garnered considerable attention owing to their diverse biological activities and potential applications. Previous investigations into the bioactivity of COS often encountered challenges, primarily stemming from the use of COS mixtures, making it difficult to discern specific effects linked to distinct degrees of polymerization (DP). Recent progress underscores the significant variation in the biological activities of COS corresponding to different DPs, prompting dedicated research towards synthesizing COS with well-defined polymerization. Among the available methods, enzymatic preparation stands out as a viable and environmentally friendly approach for COS synthesis. This article provides a comprehensive overview of emerging strategies for the enzymatic preparation of single COS, encompassing protein engineering, enzymatic membrane bioreactors, and transglycosylation reactions. Furthermore, the bioactivities of single COS, including anti-tumor, antioxidant, antibacterial, anti-inflammatory, and plant defense inducer properties, exhibit close associations with DP values. The potential applications of single COS, such as in functional food, food preservation, and crop planting, are also elucidated.
Collapse
Affiliation(s)
- Na Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yuting Lu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xian Sheng
- Yixing Hospital of Traditional Chinese Medicine, Yixing, 214299, Jiangsu, China
| | - Yi Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Zhi Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
15
|
Lan R, Wu F, Wang Y, Lin Z, Wang H, Zhang J, Zhao Z. Chitosan oligosaccharide improves intestinal function by promoting intestinal development, alleviating intestinal inflammatory response, and enhancing antioxidant capacity in broilers aged d 1 to 14. Poult Sci 2024; 103:103381. [PMID: 38157786 PMCID: PMC10790092 DOI: 10.1016/j.psj.2023.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
This study was conducted to investigate the effects of chitosan oligosaccharide (COS) supplementation on intestinal development and functions, inflammatory response, antioxidant capacity and the related signaling pathways in broilers aged d 1 to 14. A total of 240 one-day old male Arbor Acres broilers (40.47 ± 0.30 g) were randomly allotted to 4 groups, and each group consisted of 6 replicate pens with 10 broilers per replicate. Broilers fed a basal diet supplementation with COS at 0 (CON group), 200 (COS200 group), 400 (COS400 group), and 800 mg/kg (COS800 group) for 14 d, respectively. Broilers in the COS supplementation groups had no significant effects on growth performance. Compared to the CON group, dietary COS supplementation increased (P < 0.05) the relative weight of duodenum, jejunal lipase activity, duodenal and ileal villus surface area, and lower (P < 0.05) ileal amylase and alkaline phosphatase activity, and crypt depth. The expression level of duodenal glucose transporter 1 (GLUT1), Na+-glucose cotransporter 1 (SGLT1), peptide transporter 1 (PepT1), occludin, zonula occludens-1 (ZO-1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and interleukin-10 (IL-10), jejunal SGLT1, PepT1, occludin, tumor necrosis factor-α (TNF-α), and ileal SGLT1, PepT1, and fatty acid binding protein 1 (FABP1) was upregulated by COS. However, the expression level of duodenal FABP1 and TNF-α, jejunal GLUT1, ZO-1, TLR4, MyD88, nuclear factor kappa-B p65 (NF-κB p65), and IL-1β, and ileal GLUT1, NF-κB p65, and IL-1β was downregulated by COS. Furthermore, dietary COS supplementation increased duodenal catalase (CAT), glutathione peroxidase (GSH-Px), and total superoxide dismutase (T-SOD) activity, jejunal CAT and T-SOD activity, upregulated the expression level of duodenal nuclear factor-erythroid 2-related factor 2 (Nrf2), CAT, glutathione peroxidase 1 (GPX1), and copper and zinc superoxide dismutase (Cu/Zn SOD), jejunal CAT, and ileal Nrf2, CAT, and GPX1. These results suggested that COS could promote intestinal development and functions in broilers aged d 1 to 14, which might be mediated by alleviating intestinal inflammatory response and enhancing antioxidant capacity.
Collapse
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Fan Wu
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Yuchen Wang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Ziwei Lin
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Haoxuan Wang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Jia Zhang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Zhihui Zhao
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China.
| |
Collapse
|
16
|
Yan ZX, Li M, Wei HY, Peng SY, Xu DJ, Zhang B, Cheng X. Characterization and Antioxidant Activity of the Polysaccharide Hydrolysate from Lactobacillus plantarum LPC-1 and Their Effect on Spinach (Spinach oleracea L.) Growth. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04843-w. [PMID: 38194184 DOI: 10.1007/s12010-023-04843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
This study presents a comparison between two hydrolysis systems (MnO2/H2O2 and ascorbic acid (VC)/H2O2) for the depolymerization of exopolysaccharide (EPS) from Lactobacillus plantarum LPC-1. Response surface methodology (RSM) was used to optimize these two degradation systems, resulting in two H2O2-free degradation products, MEPS (MnO2/H2O2-treated EPS) and VEPS (VC/H2O2-treated EPS), where H2O2 residues in the final products and their antioxidant activity were considered vital points. The relationship between the structural variations of two degraded polysaccharides and their antioxidant activity was characterized. Physicochemical tests showed that H2O2 had a notable impact on determining the total and reducing sugars in the polysaccharides, and both degradation systems efficiently eliminated this effect. After optimization, the average molecular weight of EPS was reduced from 265.75 kDa to 135.41 kDa (MEPS) and 113.11 kDa (VEPS), improving its antioxidant properties. Characterization results showed that the two hydrolysis products had similar major functional groups and monosaccharide composition as EPS. The crystal structure, main chain length, and branched chain number were crucial factors affecting the biological activity of polysaccharides. In pot testing, two degraded polysaccharides improved spinach quality more than EPS due to their lower molecular weights, suggesting the advantages of low-molecular-weight polysaccharides. In summary, these two degradation techniques offer valuable insights for further expanding the utilization of microbial resources.
Collapse
Affiliation(s)
- Zu-Xuan Yan
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Min Li
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hong-Yu Wei
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Duan-Jun Xu
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bao Zhang
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Cheng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
17
|
Kalitnik A, Grelich-Mucha M, Olesiak-Bańska J. Chitosan oligosaccharides inhibit the fibrillation of insulin and disassemble its preformed fibrils. Int J Biol Macromol 2024; 254:127857. [PMID: 37924913 DOI: 10.1016/j.ijbiomac.2023.127857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
In the current study, we first established that chitosan oligosaccharides (COS) have significant anti-fibrillogenic and fibril-destabilising effects on bovine insulin in vitro that proportionally expand with concentration growth. The obtained data were supported by the Thioflavin T (ThT) assay, circular dichroism (CD), attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and atomic force microscopy (AFM). Interestingly, coincubation of insulin with COS in the ratio of 1 to 10 over 48 h at 37 °C leads to full prevention of insulin aggregation, and in the case of preformed fibrils, results in their destabilisation and disaggregation. Moreover, both a cationic polymer of allylamine (PAH) and a sulphated oligosaccharide (CROS) prepared from carrageenan had no inhibitory effect on insulin amyloid formation. Thus, we proposed that COS modulates insulin amyloid formation due to the presence of linear sugar units, the degree of polymerization, and the free amino group providing a positive charge. These findings highlight the potential implications of COS as a promising substance for the treatment of insulin-dependent diabetes mellitus and localised insulin-derived amyloidosis and, moreover, provide a new insight into the mechanism of the anti-diabetic and antitoxic properties of chitosan and chitosan-based agents.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Manuela Grelich-Mucha
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
18
|
Li B, Han L, Ma J, Zhao M, Yang B, Xu M, Gao Y, Xu Q, Du Y. Synthesis of acylated derivatives of chitosan oligosaccharide and evaluation of their potential antifungal agents on Fusarium oxysporum. Carbohydr Polym 2023; 314:120955. [PMID: 37173050 DOI: 10.1016/j.carbpol.2023.120955] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Chitosan oligosaccharide (COS) is an important carbohydrate-based biomaterial for synthesizing candidate drugs and biological agents. This study synthesized COS derivatives by grafting acyl chlorides of different alkyl chain lengths (C8, C10, and C12) onto COS molecules and further investigated their physicochemical properties and antimicrobial activity. The COS acylated derivatives were characterized using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, and thermogravimetric analysis. COS acylated derivatives were successfully synthesized and possessed high solubility and thermal stability. As for the evaluation of antibacterial activity, COS acylated derivatives did not significantly inhibit Escherichia coli and Staphylococcus aureus, but they significantly inhibited Fusarium oxysporum, which was superior to that of COS. Transcriptomic analysis revealed that COS acylated derivatives exerted antifungal activity mainly by downregulating the expression of efflux pumps, disrupting cell wall integrity, and impeding normal cell metabolism. Our findings provided a fundamental theory for the development of environmentally friendly antifungal agents.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Jinlong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Meijuan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Binghui Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mei Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yujia Gao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
19
|
Han L, Zhai R, Hu B, Yang J, Li Y, Xu Z, Meng Y, Li T. Effects of Octenyl-Succinylated Chitosan-Whey Protein Isolated on Emulsion Properties, Astaxanthin Solubility, Stability, and Bioaccessibility. Foods 2023; 12:2898. [PMID: 37569167 PMCID: PMC10418324 DOI: 10.3390/foods12152898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The synthesis of octenyl-succinylated chitosan with different degrees of substitution resulting from chemical modification of chitosan and controlled addition of octenyl succinic acid was investigated. The modified products were characterized using 1H NMR, FTIR, and XRD, and the degree of substitution was also determined. The properties of the modified chitosan oligosaccharide in solution were evaluated by surface tension and dye solubilization, finding that the molecules self-assembled when they are above the critical aggregation concentration. The two methods yielded consistent results, showing that the self-assembly was reduced with higher levels of substitution. The antimicrobial activity of the octanyl-succinylated chitosan oligosaccharide (OSA-COS) derivatives against Staphylococcus aureus, Escherichia coli, and Fusarium oxysporum f.sp cucumerinum was investigated by the Oxford cup method. While the acetylated COS derivatives were not significantly effective against either E coli or S. aureus, they showed significant antifungal activity toward F. oxysporum that was superior to that of COS. The modified product was found to form a stable emulsion when mixed with whey protein isolate. The emulsion formed by the highly substituted derivatives have a certain stability and loading efficiency, which can be used for the encapsulation and delivery of astaxanthin.
Collapse
Affiliation(s)
- Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Ruiyi Zhai
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, UK;
| | - Yaoyao Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Yueyue Meng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| |
Collapse
|
20
|
Zhou M, Huang J, Zhou J, Zhi C, Bai Y, Che Q, Cao H, Guo J, Su Z. Anti-Obesity Effect and Mechanism of Chitooligosaccharides Were Revealed Based on Lipidomics in Diet-Induced Obese Mice. Molecules 2023; 28:5595. [PMID: 37513467 PMCID: PMC10384603 DOI: 10.3390/molecules28145595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chitooligosaccharide (COS) is a natural product from the ocean, and while many studies have reported its important role in metabolic diseases, no study has systematically elaborated the anti-obesity effect and mechanism of COS. Herein, COSM (MW ≤ 3000 Da) was administered to diet-induced obese mice by oral gavage once daily for eight weeks. The results show that COSM administration reduced body weight; slowed weight gain; reduced serum Glu, insulin, NEFA, TC, TG, and LDL-C levels; increased serum HSL and HDL-C levels; improved inflammation; and reduced lipid droplet size in adipose tissue. Further lipidomic analysis of adipose tissue revealed that 31 lipid species are considered to be underlying lipid biomarkers in COS therapy. These lipids are mainly enriched in pathways involving insulin resistance, thermogenesis, cholesterol metabolism, glyceride metabolism and cyclic adenosine monophosphate (cAMP), which sheds light on the weight loss mechanism of COS. The Western blot assay demonstrated that COSM intervention can improve insulin resistance, inhibit de novo synthesis, and promote thermogenesis and β-oxidation in mitochondria by the AMPK pathway, thereby alleviating high-fat diet-induced obesity. In short, our study can provide a more comprehensive direction for the application of COS in obesity based on molecular markers.
Collapse
Affiliation(s)
- Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingqing Huang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiting Zhi
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
21
|
Bhatt P, Joshi S, Urper Bayram GM, Khati P, Simsek H. Developments and application of chitosan-based adsorbents for wastewater treatments. ENVIRONMENTAL RESEARCH 2023; 226:115530. [PMID: 36863653 DOI: 10.1016/j.envres.2023.115530] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Water quality is deteriorating continuously as increasing levels of toxic inorganic and organic contaminants mostly discharging into the aquatic environment. Removal of such pollutants from the water system is an emerging research area. During the past few years use of biodegradable and biocompatible natural additives has attracted considerable attention to alleviate pollutants from wastewater. The chitosan and its composites emerged as a promising adsorbents due to their low price, abundance, amino, and hydroxyl groups, as well as their potential to remove various toxins from wastewater. However, a few challenges associated with its practical use include lack of selectivity, low mechanical strength, and solubility in acidic medium. Therefore, several approaches for modification have been explored to improve the physicochemical properties of chitosan for wastewater treatment. Chitosan nanocomposites found effective for the removal of metals, pharmaceuticals, pesticides, microplastics from the wastewaters. Nanoparticle doped with chitosan in the form of nano-biocomposites has recently gained much attention and proven a successful tool for water purification. Hence, applying chitosan-based adsorbents with numerous modifications is a cutting-edge approach to eliminating toxic pollutants from aquatic systems with the global aim of making potable water available worldwide. This review presents an overview of distinct materials and methods for developing novel chitosan-based nanocomposites for wastewater treatment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Samiksha Joshi
- Graphic Era Hill University Bhimtal, Nainital, Uttarakhand, India
| | - Gulsum Melike Urper Bayram
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Priyanka Khati
- Crop Production Division, Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
22
|
Guo J, Gao W, Wang J, Yao Y, Man Z, Cai Z, Qing Q. Thr22 plays an important role in the efficient catalytic process of Bacillus subtilis chitosanase BsCsn46A. Enzyme Microb Technol 2023; 167:110242. [PMID: 37099965 DOI: 10.1016/j.enzmictec.2023.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Threonine 22 (Thr22) located in catalytic center near the catalytic amino acid Glu19 was non-conserved in Bacillus species chitosanase. In order to study the function of Thr22, saturation mutagenesis was carried out towards P121N, a mutant previously constructed in our laboratory. Compared with P121N, which was designated as the wild type (WT) in this research, the specific enzyme activity of all mutants was decreased, and that of the T22P mutant was decreased by 91.6 %. Among these mutants, the optimum temperature decreased from 55 °C to 50 °C for 10 mutants and 45 °C for 4 mutants, respectively. The optimum temperature of mutant T22P was 40 °C. In order to analyze the reasons for the changes in enzymatic properties of the mutants, molecular docking analysis of WT and its mutants with substrate were performed. The hydrogen bond analysis around position 22 also conducted. The substitution of Thr22 was found to significantly affect the enzyme-substrate complex interaction. In addition, the hydrogen network near position 22 has undergone obvious changes. These changes may be the main reasons for the changes in enzymatic properties of the mutants. Altogether, this study is valuable for the future research on Bacillus chitosanase.
Collapse
Affiliation(s)
- Jing Guo
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China
| | - Jing Wang
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China
| | - Yao Yao
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China
| | - Zaiwei Man
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Zao zhuang Key Laboraory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang, China.
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, China
| | - Qing Qing
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, China
| |
Collapse
|
23
|
Jeong DY, Lee ET, Lee J, Shin DC, Lee YH, Park JK. Effect of chemical structural properties of chitooligosaccharides on the immune activity of macrophages. Macromol Res 2023. [DOI: 10.1007/s13233-023-00143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
24
|
Mechanisms and technology of marine oligosaccharides to control postharvest disease of fruits. Food Chem 2023; 404:134664. [DOI: 10.1016/j.foodchem.2022.134664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
25
|
Biobased diglycidyl ether diphenolates: Effect of the ester moiety on fragrance oil microencapsulation by interfacial polymerization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Potential Medical Applications of Chitooligosaccharides. Polymers (Basel) 2022; 14:polym14173558. [PMID: 36080631 PMCID: PMC9460531 DOI: 10.3390/polym14173558] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chitooligosaccharides, also known as chitosan oligomers or chitooligomers, are made up of chitosan with a degree of polymerization (DP) that is less than 20 and an average molecular weight (MW) that is lower than 3.9 kDa. COS can be produced through enzymatic conversions using chitinases, physical and chemical applications, or a combination of these strategies. COS is of significant interest for pharmacological and medical applications due to its increased water solubility and non-toxicity, with a wide range of bioactivities, including antibacterial, anti-inflammatory, anti-obesity, neuroprotective, anticancer, and antioxidant effects. This review aims to outline the recent advances and potential applications of COS in various diseases and conditions based on the available literature, mainly from preclinical research. The prospects of further in vivo studies and translational research on COS in the medical field are highlighted.
Collapse
|
27
|
Galal-Khallaf A, Al-Awthan YS, Al-Duais MA, Mohammed-Geba K. Nile crab Potamonautes niloticus shell extract: Chromatographic and molecular elucidation of potent antioxidant and anti-inflammatory capabilities. Bioorg Chem 2022; 127:106023. [PMID: 35853295 DOI: 10.1016/j.bioorg.2022.106023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022]
Abstract
Diseases emerging from oxidative stress and inflammatory imbalance are deeply threatening the modern world. Fisheries by-products are rich in bioactive metabolites. However, they are usually discarded, posing a real environmental burden. Herein we aimed to explore the bioactive compounds, anti-oxidant, and anti-inflammatory capabilities of the shell of the freshwater Nile crab Potamonautes niloticus. Methanolic extract of crab shell was subjected to GC/MS and HPLC analyses of total lipids, flavonoids, and phenolic acids. Also, zebrafish Danio rerio was subjected to inflammatory status using CuSO4, then treated with different doses of shell extract. Total antioxidant capacity and QPCR analyses for gene expression of different antioxidant enzymes, i.e. superoxide dismutase(sod), catalase (cat), and glutathione peroxidase (gpx) and pro-inflammatory cytokines, i.e. tumor necrosis factor alpha (tnf-α), nuclear factor kappa B (nf-κb), interleukin 1-Beta (il-1b) were assessed. The results showed the richness of crab shell extract with ω - 9 (32.78 %), ω - 7 (6.37 %), and ω - 6 (4 %) unsaturated fatty acids. Diverse phenolic acids and flavonoids were found, dominaed by Benzoic acid (11.24 µg mL-1), Syringic acid (11.4 µg mL-1), Ferulic acid (10.55 µg mL-1), Kampferol (9.47 µg mL-1), Quercetin (6.33 µg mL-1), and Naringin (4.16 µg mL-1). Crab extract also increased the total antioxidant capacity and oxidative stress enzymeś mRNA levels by 1.3-2.15 folds. It down-regulated pro-inflammatory cytokineś mRNA levels by 1.3-2 folds in comparison to positive control (CuSO4-induced) zebrafishes. The net results indicated that Nile crab shell extract is a rich source of anti-oxidant and anti-inflammatory compounds. Therefore, we recommend to continuously explore the bioactive capabilities of exoskeletons of different shellfish species. This can provide additive values for these products and reduce the environmental burden of their irresponsible discarding.
Collapse
Affiliation(s)
- Asmaa Galal-Khallaf
- Molecular Biology and Biotechnology Laboratory, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Mohammed A Al-Duais
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Biochemistry Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb, Yemen
| | - Khaled Mohammed-Geba
- Molecular Biology and Biotechnology Laboratory, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt; Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Cambridge, MD, United States.
| |
Collapse
|
28
|
Nasr AM, Mortagi YI, Elwahab NHA, Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM, Kamal I. Upgrading the Transdermal Biomedical Capabilities of Thyme Essential Oil Nanoemulsions Using Amphiphilic Oligochitosan Vehicles. Pharmaceutics 2022; 14:pharmaceutics14071350. [PMID: 35890246 PMCID: PMC9317589 DOI: 10.3390/pharmaceutics14071350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Thymus vulgaris L. (thyme) essential oil (TEO) has gained much attention because of its long history of medicinal usage. However, the lack of precise chemical profiling of the TEO and methods to optimize the bioactivity and delivery of its constituents has hampered its research on quality control and biological function; (2) Methods: The current study aimed to analyze the TEO’s chemical composition using the GC-MS method and identify its key components. Another objective of this work is to study the impact of the protective layer of amphiphilic oligochitosan (AOC) on the physicochemical stability and transdermal potentials of TEO multilayer nanoemulsions formulated by the incorporation of TEO, Tween80, lecithin (Lec), and AOC; (3) Results: The AOC protective layer significantly improved the stability of TEO-based NEs as revealed by the constancy of their physicochemical properties (particle size and zeta potential) during storage for a week. Excessive fine-tuning of thyme extract NEs and the AOC protective layer’s persistent positive charge have been contributed to the thyme extract’s improved anti-inflammatory, transdermal, and anti-melanoma potentials; (4) Conclusions: the AOC-coated NEs could offer novel multifunctional nanoplatforms for effective transdermal delivery of lipophilic bioactive materials.
Collapse
Affiliation(s)
- Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; (A.M.N.); (I.K.)
| | - Yasmin I. Mortagi
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, Egypt;
| | - Nashwa H. Abd Elwahab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41636, Egypt;
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (M.Y.A.); (A.A.S.); (S.E.I.E.)
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (M.Y.A.); (A.A.S.); (S.E.I.E.)
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (M.Y.A.); (A.A.S.); (S.E.I.E.)
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Reda F. M. Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, Suez 43533, Egypt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: or
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; (A.M.N.); (I.K.)
| |
Collapse
|
29
|
Shang Y, Zhang Z, Tian J, Li X. Anti-Inflammatory Effects of Natural Products on Cerebral Ischemia. Front Pharmacol 2022; 13:914630. [PMID: 35795571 PMCID: PMC9251309 DOI: 10.3389/fphar.2022.914630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia with high mortality and morbidity still requires the effectiveness of medical treatments. A growing number of investigations have shown strong links between inflammation and cerebral ischemia. Natural medicine’s treatment methods of cerebral ischemic illness have amassed a wealth of treatment experience and theoretical knowledge. This review summarized recent progress on the disease inflammatory pathways as well as 26 representative natural products that have been routinely utilized to treat cerebral ischemic injury. These natural products have exerted anti-inflammatory effects in cerebral ischemia based on their inflammatory mechanisms, including their inflammatory gene expression patterns and their related different cell types, and the roles of inflammatory mediators in ischemic injury. Overall, the combination of the potential therapeutic interventions of natural products with the inflammatory mechanisms will make them be applicable for cerebral ischemic patients in the future.
Collapse
|
30
|
Wang B, Wang L, Qu Y, Lu J, Xia W. Chitosan oligosaccharides exert neuroprotective effects via modulating the PI3K/Akt/Bcl-2 pathway in a Parkinsonian model. Food Funct 2022; 13:5838-5853. [PMID: 35545086 DOI: 10.1039/d1fo04374a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is a threat to patients due to the inability to prevent or decelerate disease progression. Currently, most clinical drugs for the treatment of PD are synthetic drugs that always present undesirable adverse or toxic effects. Chitosan oligosaccharide (COS) is a natural oligosaccharide that has been considered relatively safe and studied in the therapeutic effects on different types of neuronal disorders. In this study, we separated four COS monomers (COSs) including chitobiose (COS2), chitotriose (COS3), chitotetraose (COS4) and chitopentaose (COS5) to explore their structure-activity relationship in PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Techniques including TLC, HPLC, MS, and NMR were applied to investigate the purity and structure of the COSs. After the oral administration of COSs, behavior indexes, pathological indexes, cytokines, and expression of proteins in the nigrostriatal pathway of the mice were analyzed. The results showed that the four COSs were fully deacetylated and the purity was >90%. Additionally, the neurobehavioral deficits of the PD mice were improved by treatment with COSs. The results further proved that COSs could protect the TH-labelled dopaminergic neurons via reducing the overexpression of α-synuclein, alleviating neuroinflammation, and activating the PI3K/Akt/Bcl-2 pathway to reduce apoptosis. COS3 exhibited a better effect on protecting dopaminergic neurons; however, COS2 provided a better effect on reducing the overexpression of α-synuclein. To conclude, the neuroprotective activity makes COSs a viable candidate as an ingredient for healthcare products.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ling Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yufei Qu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jingyu Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
31
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
32
|
The protective role of Chitooligosaccharides against chronic ulcerative colitis induced by dextran sulfate sodium in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Xiang J, Wang J, Xie H, Liu Y, Bai Y, Che Q, Cao H, Huang G, Guo J, Su Z. Protective effect and mechanism of chitooligosaccharides on acetaminophen-induced liver injury. Food Funct 2021; 12:9979-9993. [PMID: 34494629 DOI: 10.1039/d1fo00953b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Currently, drug-induced liver injury caused by acetaminophen (APAP) is the second leading cause of human liver transplantation. The only clinical antidote treatment for APAP-induced liver injury is N-acetyl-L-cysteine (NAC), which has many side effects. Chitooligosaccharides (COS) are processed from naturally occurring chitin through chemical desalting and deproteinization, biological enzymatic hydrolysis and other processes. In this study, we constructed in vitro and in vivo models of APAP-induced liver injury to study COS of two molecular weights (MWs), which are COST (MW ≤ 1000 Da) and COSM (MW ≤ 3000 Da). The results showed that COST and COSM can significantly reduce the levels of serum ALT and AST and liver MDA, TNF-α, IL-1β and IL-6, and increase the levels and activity of GSH, SOD, GSH-Px and CAT. A mechanistic study found that COST and COSM can significantly reduce the expression of liver CYP2E1, Keap1, p-ASK1/ASK1, p-MKK4/MKK4, p-JNK/JNK, Caspase-3 and Bax and increase the expression of Nrf2, HO-1, eNOS, SOD and Bcl-XL. COST and COSM can inhibit toxic APAP metabolism, inhibit oxidative damage and the apoptosis pathway, increase activation of the liver antioxidant pathway, and ultimately ameliorate APAP-induced liver oxidative damage.
Collapse
Affiliation(s)
- Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jin Wang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Guangzhou 510663, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guidong Huang
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, 15#, Lequn Road, Guilin, Guangxi Zhuang Autonomous Region, 541001, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
34
|
Chitosan: An Overview of Its Properties and Applications. Polymers (Basel) 2021; 13:polym13193256. [PMID: 34641071 PMCID: PMC8512059 DOI: 10.3390/polym13193256] [Citation(s) in RCA: 328] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chitosan has garnered much interest due to its properties and possible applications. Every year the number of publications and patents based on this polymer increase. Chitosan exhibits poor solubility in neutral and basic media, limiting its use in such conditions. Another serious obstacle is directly related to its natural origin. Chitosan is not a single polymer with a defined structure but a family of molecules with differences in their composition, size, and monomer distribution. These properties have a fundamental effect on the biological and technological performance of the polymer. Moreover, some of the biological properties claimed are discrete. In this review, we discuss how chitosan chemistry can solve the problems related to its poor solubility and can boost the polymer properties. We focus on some of the main biological properties of chitosan and the relationship with the physicochemical properties of the polymer. Then, we review two polymer applications related to green processes: the use of chitosan in the green synthesis of metallic nanoparticles and its use as support for biocatalysts. Finally, we briefly describe how making use of the technological properties of chitosan makes it possible to develop a variety of systems for drug delivery.
Collapse
|
35
|
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, Ren M, Li Y, Chen H, Wang J, Gong D. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review. Front Pharmacol 2021; 12:607412. [PMID: 33967750 PMCID: PMC8102015 DOI: 10.3389/fphar.2021.607412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it’s reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chitooligosaccharides (COS) are homo- or hetero-oligomers of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) that can be obtained by chitosan or chitin hydrolysis. Their enzymatic production is preferred over other methodologies (physical, chemical, etc.) due to the mild conditions required, the fewer amounts of waste and its efficiency to control product composition. By properly selecting the enzyme (chitinase, chitosanase or nonspecific enzymes) and the substrate properties (degree of deacetylation, molecular weight, etc.), it is possible to direct the synthesis towards any of the three COS types: fully acetylated (faCOS), partially acetylated (paCOS) and fully deacetylated (fdCOS). In this article, we review the main strategies to steer the COS production towards a specific group. The chemical characterization of COS by advanced techniques, e.g., high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry, is critical for structure–function studies. The scaling of processes to synthesize specific COS mixtures is difficult due to the low solubility of chitin/chitosan, the heterogeneity of the reaction mixtures, and high amounts of salts. Enzyme immobilization can help to minimize such hurdles. The main bioactive properties of COS are herein reviewed. Finally, the anti-inflammatory activity of three COS mixtures was assayed in murine macrophages after stimulation with lipopolysaccharides.
Collapse
|