1
|
Kanasaki A, Niibo M, Iida T. Metabolic Profiling of Rat Kidney Tissue Following Administration of D-Allulose. J Appl Glycosci (1999) 2024; 71:73-80. [PMID: 39234033 PMCID: PMC11368711 DOI: 10.5458/jag.jag.jag-2023_0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/09/2024] [Indexed: 09/06/2024] Open
Abstract
D-Allulose (D-psicose) is a rare sugar and a C-3 epimer of D-fructose. D-Allulose has been reported to have several health benefits via its alteration of both glucose and lipid metabolism. It was previously reported that D-allulose alters the hepatic metabolomic profile. Although the kidneys are crucial organs in metabolic regulation, the effects of D-allulose on renal metabolism have not yet been established. Therefore, this study was designed to capture the overall metabolic response in the kidneys to D-allulose. This was done by providing an AIN-93G diet to Wistar rats, with or without 3 % D-allulose, for four weeks. Renal tissue and blood samples were collected after a 3-hour fasting for evaluation of the renal metabolic profile and their related plasma parameters. D-Allulose increased renal weight without changes in the plasma indices associated with reduced renal function. Metabolic profiling identified a total of 264 peaks. As the contribution rate was too low in the principal component analysis results of the metabolic profiling results, we evaluated the metabolites that were significantly different between two groups and identified 23 up-regulated and 26 down-regulated metabolites in the D-allulose group. D-Allulose also had significant influence on several metabolites involved in glucose metabolism, amino acid metabolism, and purine metabolism. Moreover, the levels of trimethylamine N-oxide and symmetric dimethylarginine, which are associated with several diseases such as chronic kidney disease and cardiovascular disease decreased following D-allulose diets. This study showed that D-allulose affects the renal metabolic profile, and our findings will help elucidate the function of D-allulose.
Collapse
Affiliation(s)
- Akane Kanasaki
- Research and Development, Matsutani Chemical Industry Co., Ltd.
| | - Misato Niibo
- Research and Development, Matsutani Chemical Industry Co., Ltd.
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Co., Ltd.
| |
Collapse
|
2
|
Li Y, Miao S, Tan J, Zhang Q, Chen DDY. Capillary Electrophoresis: A Three-Year Literature Review. Anal Chem 2024; 96:7799-7816. [PMID: 38598751 DOI: 10.1021/acs.analchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Siyu Miao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiahua Tan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Song H, Ma H, Shi J, Liu Y, Kan C, Hou N, Han J, Sun X, Qiu H. Optimizing glycation control in diabetes: An integrated approach for inhibiting nonenzymatic glycation reactions of biological macromolecules. Int J Biol Macromol 2023:125148. [PMID: 37268079 DOI: 10.1016/j.ijbiomac.2023.125148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Diabetes is a multifactorial disorder that increases mortality and disability due to its complications. A key driver of these complications is nonenzymatic glycation, which generates advanced glycation end-products (AGEs) that impair tissue function. Therefore, effective nonenzymatic glycation prevention and control strategies are urgently needed. This review comprehensively describes the molecular mechanisms and pathological consequences of nonenzymatic glycation in diabetes and outlines various anti-glycation strategies, such as lowering plasma glucose, interfering with the glycation reaction, and degrading early and late glycation products. Diet, exercise, and hypoglycemic medications can reduce the onset of high glucose at the source. Glucose or amino acid analogs such as flavonoids, lysine and aminoguanidine competitively bind to proteins or glucose to block the initial nonenzymatic glycation reaction. In addition, deglycation enzymes such as amadoriase, fructosamine-3-kinase, parkinson's disease protein, glutamine amidotransferase-like class 1 domain-containing 3A and terminal FraB deglycase can eliminate existing nonenzymatic glycation products. These strategies involve nutritional, pharmacological, and enzymatic interventions that target different stages of nonenzymatic glycation. This review also emphasizes the therapeutic potential of anti-glycation drugs for preventing and treating diabetes complications.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jing Han
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
4
|
Li Z, Feng L, Chen Z, Hu Y, Fei K, Xu H, Gao XD. Efficient enzymatic synthesis of d-allulose using a novel d-allulose-3-epimerase from Caballeronia insecticola. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:339-348. [PMID: 35871484 DOI: 10.1002/jsfa.12147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rare sugars have become promising 'sugar alternatives' because of their low calories and unique physiological functions. Among the family of rare sugars, d-allulose is one of the sugars attracting interest. Ketose 3-epimerases (KEase), including d-tagatose 3-epimerase (DTEase) and d-allulose 3-epimerase (DAEase), are mainly used for d-allulose production. RESULTS In this study, a putative xylose isomerase from Caballeronia insecticola was characterized and identified as a novel DAEase. Caballeronia insecticola DAEase displayed prominent enzymatic properties, and 150 g L-1 d-allulose was produced from 500 g L-1 d-fructose in 45 min with a conversion rate of 30% and high productivity of 200 g L-1 h-1 . Furthermore, DAEase was employed in a phosphorylation-dephosphorylation cascade reaction, which significantly increased the conversion rate of d-allulose. Under optimized conditions, the conversion rate of d-allulose was approximately 100% when the concentration of d-fructose was 50 mmol L-1 . CONCLUSION This research described a very beneficial and facile approach for d-allulose production based on C. insecticola DAEase. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Linxue Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yangfan Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Huilin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Tsuzuki T, Suzuki R, Kajun R, Yamada T, Iida T, Liu B, Koike T, Toyoda Y, Negishi T, Yukawa K. Combined effects of exercise training and D-allulose intake on endurance capacity in mice. Physiol Rep 2022; 10:e15297. [PMID: 35546434 PMCID: PMC9095992 DOI: 10.14814/phy2.15297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 04/15/2023] Open
Abstract
This study investigated the combined effects of exercise training and D-allulose intake on endurance capacity in mice. Male C57BL/6J mice were fed either a control diet (Con) or a 3% D-allulose diet (Allu) and further divided into the sedentary (Sed) or exercise training (Ex) groups (Con-Sed, Con-Ex, Allu-Sed, Allu-Ex, respectively; n = 6-7/group). The mice in the Ex groups were trained on a motor-driven treadmill 5 days/week for 4 weeks (15-18 m/min, 60 min). After the exercise training period, all mice underwent an exhaustive running test to assess their endurance capacity. At 48 h after the running test, the mice in the Ex groups were subjected to run at 18 m/min for 60 min again. Then the gastrocnemius muscle and liver were sampled immediately after the exercise bout. The running time until exhaustion tended to be higher in the Allu-Ex than in the Con-Ex group (p = 0.08). The muscle glycogen content was significantly lower in the Con-Ex than in the Con-Sed group and was significantly higher in the Allu-Ex than in the Con-Ex group (p < 0.05). Moreover, exercise training increased the phosphorylation levels of adenosine monophosphate-activated protein kinase (AMPK) in the muscle and liver. The phosphorylation levels of acetyl coenzyme A carboxylase (ACC), a downstream of AMPK, in the muscle and liver were significantly higher in the Allu-Ex than in the Con-Sed group (p < 0.05), suggesting that the combination of exercise training and D-allulose might have activated the AMPK-ACC signaling pathway, which is associated with fatty acid oxidation in the muscle and liver. Taken together, our data suggested the combination of exercise training and D-allulose intake as an effective strategy to upregulate endurance capacity in mice. This may be associated with sparing glycogen content and enhancing activation of AMPK-ACC signaling in the skeletal muscle.
Collapse
Affiliation(s)
| | - Ryo Suzuki
- Faculty of PharmacyMeijo UniversityNagoyaAichiJapan
| | - Risa Kajun
- Faculty of PharmacyMeijo UniversityNagoyaAichiJapan
| | - Takako Yamada
- Research and DevelopmentMatsutani Chemical Industry Co., LtdItamiHyogoJapan
| | - Tetsuo Iida
- Research and DevelopmentMatsutani Chemical Industry Co., LtdItamiHyogoJapan
| | - Bingyang Liu
- Department of Sports MedicineGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| | - Teruhiko Koike
- Department of Sports MedicineGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
- Research Center of Health, Physical Fitness and SportsNagoya UniversityNagoyaAichiJapan
| | | | | | | |
Collapse
|
6
|
Lee GH, Peng C, Lee HY, Park SA, Hoang TH, Kim JH, Sa S, Kim GE, Han JS, Chae HJ. D-allulose ameliorates adiposity through the AMPK-SIRT1-PGC-1α pathway in HFD-induced SD rats. Food Nutr Res 2021; 65:7803. [PMID: 35221861 PMCID: PMC8829832 DOI: 10.29219/fnr.v65.7803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 08/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background Objective Design Results Conclusion
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Cheng Peng
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Hwa-Young Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Seon-Ah Park
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - The-Hiep Hoang
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Jung Hyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Soonok Sa
- Samyang Corp., Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Go-Eun Kim
- Samyang Corp., Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jung-Sook Han
- Samyang Corp., Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
- Han-Jung Chae, Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk 54907 Republic of Korea.
| |
Collapse
|
7
|
Xia Y, Cheng Q, Mu W, Hu X, Sun Z, Qiu Y, Liu X, Wang Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021; 10:2186. [PMID: 34574296 PMCID: PMC8467252 DOI: 10.3390/foods10092186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, China;
| | - Zhen Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Ximing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|