1
|
Lombardo L, Mirabile S, Gitto R, Cosentino G, Alcaro S, Dichiara M, Marrazzo A, Amata E, Ortuso F, De Luca L. Exploring Structural Requirements for Sigma-1 Receptor Linear Ligands: Experimental and Computational Approaches. J Chem Inf Model 2024; 64:5701-5711. [PMID: 38940754 DOI: 10.1021/acs.jcim.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sigma-1 receptor (S1R) is involved in a large array of biological functions due to its ability to interact with various proteins and ion channels. Crystal structures of human S1R revealed the trimeric organization for which each protomer comprises the ligand binding pocket. This study applied a multistep computational procedure to develop a pharmacophore model obtained from molecular dynamics simulations of available cocrystal structures of well-known S1R ligands. Apart from the well-established positive ionizable and hydrophobic features, the obtained model included an additional specific hydrophobic feature and different excluded volumes, thus increasing the selectivity of the model as well as a more detailed determination of the distance between two essential features. The obtained pharmacophore model passed the validation test by receiver operating characteristic (ROC) curve analysis of active and inactive S1R ligands. Finally, the pharmacophoric performance was experimentally investigated through the synthesis and binding assay of new 4-phenylpiperazine-based compounds. The most active new ligand 2-(3-methyl-1-piperidyl)-1-(4-phenylpiperazin-1-yl)ethanone (3) showed an S1R affinity close to the reference compound haloperidol (Ki values of 4.8 and 2.6 nM, respectively). The proposed pharmacophore model can represent a useful tool to design and discover new potent S1R ligands.
Collapse
Affiliation(s)
- Lisa Lombardo
- CHIBIOFARAM Department University of Messina, Viale F. d'Alcontres 31, I-98166 Messina, Italy
| | - Salvatore Mirabile
- CHIBIOFARAM Department University of Messina, Viale F. d'Alcontres 31, I-98166 Messina, Italy
| | - Rosaria Gitto
- CHIBIOFARAM Department University of Messina, Viale F. d'Alcontres 31, I-98166 Messina, Italy
| | - Giuseppe Cosentino
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Germaneto, I-88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", I-88100 Catanzaro, Italy
- Associazione CRISEA, Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Loc. Condoleo, I-88055 Belcastro, Italy
| | - Maria Dichiara
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Francesco Ortuso
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Germaneto, I-88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", I-88100 Catanzaro, Italy
| | - Laura De Luca
- CHIBIOFARAM Department University of Messina, Viale F. d'Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
2
|
Marešová A, Jurášek M, Drašar PB, Dolenský B, Prokudina EA, Shalgunov V, Herth MM, Cumming P, Popkov A. A facile synthesis of precursor for the σ-1 receptor PET radioligand [ 18 F]FTC-146 and its radiofluorination. J Labelled Comp Radiopharm 2024; 67:59-66. [PMID: 38171540 DOI: 10.1002/jlcr.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The σ-1 receptor is a non-opioid transmembrane protein involved in various human pathologies including neurodegenerative diseases, inflammation, and cancer. The previously published ligand [18 F]FTC-146 is among the most promising tools for σ-1 molecular imaging by positron emission tomography (PET), with a potential for application in clinical diagnostics and research. However, the published six- or four-step synthesis of the tosyl ester precursor for its radiosynthesis is complicated and time-consuming. Herein, we present a simple one-step precursor synthesis followed by a one-step fluorine-18 labeling procedure that streamlines the preparation of [18 F]FTC-146. Instead of a tosyl-based precursor, we developed a one-step synthesis of the precursor analog AM-16 containing a chloride leaving group for the SN 2 reaction with 18 F-fluoride. 18 F-fluorination of AM-16 led to a moderate decay-corrected radiochemical yield (RCY = 7.5%) with molar activity (Am ) of 45.9 GBq/μmol. Further optimization of this procedure should enable routine radiopharmaceutical production of this promising PET tracer.
Collapse
Affiliation(s)
- Anna Marešová
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Praha 6, Czech Republic
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Praha 6, Czech Republic
| | - Pavel B Drašar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Praha 6, Czech Republic
| | - Bohumil Dolenský
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Praha 6, Czech Republic
| | - Elena A Prokudina
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Praha 6, Czech Republic
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- PET and Cyclotron Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Paul Cumming
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Kevin Grove, Queensland, Australia
| | - Alexander Popkov
- Institute of Organic Chemistry, Johannes Kepler University, Linz, Austria
- Samo Biomedical Centre, Pardubice, Czech Republic
| |
Collapse
|
3
|
De Luca L, Lombardo L, Mirabile S, Marrazzo A, Dichiara M, Cosentino G, Amata E, Gitto R. Discovery and computational studies of piperidine/piperazine-based compounds endowed with sigma receptor affinity. RSC Med Chem 2023; 14:1734-1742. [PMID: 37731701 PMCID: PMC10507793 DOI: 10.1039/d3md00291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
Herein, we describe our efforts to identify sigma receptor 1 (S1R) ligands through a screening campaign on our in-house collection of piperidine/piperazine-based compounds. Our investigations led to the discovery of the potent compound 2-[4-(benzyl)-1-piperidin-1-yl]-1-4-(4-phenylpiperazin-1-yl)ethanone (1) with high affinity toward S1R (Ki value of 3.2 nM) that was comparable to reference compound haloperidol (Ki value of 2.5 nM). Functional assay revealed that compound 1 acted as S1R agonist. To decipher the binding mode of this promising S1R ligand as a starting point for further structure-based optimization, we analysed the docking pose by using a S1R-structure derived from cocrystal structures of potent ligands in complex with target protein. The computational study was enriched with molecular dynamic simulations that revealed the crucial amino acid residues that interacted with the most interesting compound 1.
Collapse
Affiliation(s)
- Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale Ferdinando d'Alcontres 31 98166 Messina Italy
| | - Lisa Lombardo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale Ferdinando d'Alcontres 31 98166 Messina Italy
| | - Salvatore Mirabile
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale Ferdinando d'Alcontres 31 98166 Messina Italy
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania Viale Andrea Doria 6 95125 Catania Italy
| | - Maria Dichiara
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania Viale Andrea Doria 6 95125 Catania Italy
| | - Giuseppe Cosentino
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania Viale Andrea Doria 6 95125 Catania Italy
| | - Emanuele Amata
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania Viale Andrea Doria 6 95125 Catania Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale Ferdinando d'Alcontres 31 98166 Messina Italy
| |
Collapse
|
4
|
Wang T, Jia H. The Sigma Receptors in Alzheimer's Disease: New Potential Targets for Diagnosis and Therapy. Int J Mol Sci 2023; 24:12025. [PMID: 37569401 PMCID: PMC10418732 DOI: 10.3390/ijms241512025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1) receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer's disease (AD), and thus these receptors represent two potentially effective biomarkers for emerging AD therapies. The availability of optimal radioligands for positron emission tomography (PET) neuroimaging of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease progression and AD drug efficacy.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
5
|
Ogawa K, Nishizawa K, Washiyama K, Munekane M, Fuchigami T, Echigo H, Mishiro K, Hirata S, Wakabayashi H, Takahashi K, Kinuya S. Astatine-211-labeled aza-vesamicol derivatives as sigma receptor ligands for targeted alpha therapy. Nucl Med Biol 2023; 122-123:108369. [PMID: 37516066 DOI: 10.1016/j.nucmedbio.2023.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
INTRODUCTION As sigma receptors are abundantly expressed on different types of cancer cells, several radiolabeled sigma receptor ligands have been developed for cancer imaging and therapy. Previously, we synthesized and evaluated radioiodinated aza-vesamicol derivatives, [125I]pIC3NV, [125I]mIC2N5V, and [125I]mIC3N5V. They accumulated in tumors, and [125I]mIC2N5V and [125I]mIC3N5V showed higher tumor to non-target tissue ratios than [125I]pIC3NV. Therefore, we synthesized and evaluated the corresponding 211At-labeled compounds, [211At]mAtC2N5V and [211At]mAtC3N5V, for targeted alpha therapy (TAT). METHODS [211At]mAtC2N5V and [211At]mAtC3N5V were prepared by the standard method of electrophilic astatodestannylation of the corresponding trimethylstannyl precursors. Cellular uptake experiments, and biodistribution experiments and therapeutic experiments in tumor-bearing mice were performed. RESULTS The radiochemical yields of [211At]mAtC2N5V and [211At]mAtC3N5V were 45.5 ± 14.4% and 56.9 ± 13.8%, respectively. After HPLC purification, their radiochemical purities were over 95%. [211At]mAtC2N5V and [211At]mAtC3N5V showed high uptake in DU-145 cells. They demonstrated high accumulation in tumors (6.9 ± 1.4%injected dose/g and 5.1 ± 1.4%injected dose/g at 1 h, respectively) and similar biodistribution tendencies compared with the corresponding 125I-labeled compounds. A single injection of [211At]mAtC2N5V (0.48 MBq) or [211At]mAtC3N5V (0.48 MBq) significantly inhibited tumor growth. CONCLUSION These results indicated that [211At]mAtC2N5V and [211At]mAtC3N5V could be potential candidates for TAT.
Collapse
Affiliation(s)
- Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Kota Nishizawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Saki Hirata
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
6
|
Zhou YP, Sun Y, Takahashi K, Belov V, Andrews N, Woolf CJ, Brugarolas P. Development of a PET radioligand for α2δ-1 subunit of calcium channels for imaging neuropathic pain. Eur J Med Chem 2022; 242:114688. [PMID: 36031695 PMCID: PMC9623503 DOI: 10.1016/j.ejmech.2022.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
Neuropathic pain affects 7-10% of the adult population. Being able to accurately monitor biological changes underlying neuropathic pain will improve our understanding of neuropathic pain mechanisms and facilitate the development of novel therapeutics. Positron emission tomography (PET) is a noninvasive molecular imaging technique that can provide quantitative information of biochemical changes at the whole-body level by using radiolabeled ligands. One important biological change underlying the development of neuropathic pain is the overexpression of α2δ-1 subunit of voltage-dependent calcium channels (the target of gabapentin). Thus, we hypothesized that a radiolabeled form of gabapentin may allow imaging changes in α2δ-1 for monitoring the underlying pathophysiology of neuropathic pain. Here, we report the development of two 18F-labeled derivatives of gabapentin (trans-4-[18F]fluorogabapentin and cis-4-[18F]fluorogabapentin) and their evaluation in healthy rats and a rat model of neuropathic pain (spinal nerve ligation model). Both isomers were found to selectively bind to the α2δ-1 receptor with trans-4-[18F]fluorogabapentin having higher affinity. Both tracers displayed around 1.5- to 2-fold increased uptake in injured nerves over the contralateral uninjured nerves when measured by gamma counting ex vivo. Although the small size of the nerves and the signal from surrounding muscle prevented visualizing these changes using PET, this work demonstrates that fluorinated derivatives of gabapentin retain binding to α2δ-1 and that their radiolabeled forms can be used to detect pathological changes in vitro and ex vivo. Furthermore, this work confirms that α2δ-1 is a promising target for imaging specific features of neuropathic pain.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Sun
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vasily Belov
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nick Andrews
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Fallica AN, Ciaffaglione V, Modica MN, Pittalà V, Salerno L, Amata E, Marrazzo A, Romeo G, Intagliata S. Structure-activity relationships of mixed σ1R/σ2R ligands with antiproliferative and anticancer effects. Bioorg Med Chem 2022; 73:117032. [DOI: 10.1016/j.bmc.2022.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
|
8
|
Mishiro K, Wang M, Hirata S, Fuchigami T, Shiba K, Kinuya S, Ogawa K. Development of tumor-targeting aza-vesamicol derivatives with high affinity for sigma receptors for cancer theranostics. RSC Med Chem 2022; 13:986-997. [PMID: 36092143 PMCID: PMC9384704 DOI: 10.1039/d2md00099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 07/31/2023] Open
Abstract
As sigma receptors are highly expressed on various cancer cells, radiolabeled sigma receptor ligands have been developed as imaging and therapeutic probes for cancer. Previously, we synthesized and evaluated a radioiodinated vesamicol derivative, 2-(4-[125I](4-iodophenyl)piperidine)cyclohexanol ((+)-[125I]pIV), and a radioiodinated aza-vesamicol derivative, trans-2-(4-(3-[125I](4-iodophenyl)propyl)piperazin-1-yl)cyclohexan-1-ol ([125I]2), as sigma-1 receptor-targeting probes. In order to obtain sigma receptor-targeting probes with superior biodistribution characteristics, we firstly synthesized twelve bromine-containing aza-vesamicol derivatives and evaluated their affinity for sigma receptors. One such derivative exhibited high selectivity for the sigma-1 receptor and another exhibited high affinity for both the sigma-1 and sigma-2 receptors. Thus, their halogen-substituted iodine- and radioiodine-containing compounds were prepared. The 125I-labeled compounds exhibited high uptake in tumor and lower uptake in non-target tissues than the two previously developed and evaluated 125I-labeled sigma receptor-targeting probes, [125I]pIV and [125I]2. Therefore, these novel radioiodine-labeled compounds should be promising as sigma receptor-targeting probes.
Collapse
Affiliation(s)
- Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Mengfei Wang
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Saki Hirata
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fuchigami
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Kazuhiro Shiba
- Research Center for Experimental Modeling of Human Disease, Kanazawa University Takara-machi Kanazawa Ishikawa 920-8640 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University Takara-machi Kanazawa Ishikawa 920-8641 Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
9
|
Barthel H, Villemagne VL, Drzezga A. Future Directions in Molecular Imaging of Neurodegenerative Disorders. J Nucl Med 2022; 63:68S-74S. [PMID: 35649650 DOI: 10.2967/jnumed.121.263202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The improvement of existing techniques and the development of new molecular imaging methods are an exciting and rapidly developing field in clinical care and research of neurodegenerative disorders. In the clinic, molecular imaging has the potential to improve early and differential diagnosis and to stratify and monitor therapy in these disorders. Meanwhile, in research, these techniques improve our understanding of the underlying pathophysiology and pathobiochemistry of these disorders and allow for drug testing. This article is an overview on our perspective on future developments in neurodegeneration tracers and the associated imaging technologies. For example, we predict that the current portfolio of β-amyloid and tau aggregate tracers will be improved and supplemented by tracers allowing imaging of other protein aggregation pathologies, such as α-synuclein and transactive response DNA binding protein 43 kDa. Future developments will likely also be observed in imaging neurotransmitter systems. This refers to both offering imaging to a broader population in cases involving the dopaminergic, cholinergic, and serotonergic systems and making possible the imaging of systems not yet explored, such as the glutamate and opioid systems. Tracers will be complemented by improved tracers of neuroinflammation and synaptic density. Technologywise, the use of hybrid PET/MRI, dedicated brain PET, and total-body PET scanners, as well as advanced image acquisition and processing protocols, will open doors toward broader and more efficient clinical use and novel research applications. Molecular imaging has the potential of becoming a standard and essential clinical and research tool to diagnose and study neurodegenerative disorders and to guide treatments. On that road, we will need to redefine the role of molecular imaging in relation to that of emerging blood-based biomarkers. Taken together, the unique features of molecular imaging-that is, the potential to provide direct noninvasive information on the presence, extent, localization, and quantity of molecular pathologic processes in the living body-together with the predicted novel tracer and imaging technology developments, provide optimism about a bright future for this approach to improved care and research on neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Barthel
- Department of Nuclear Medicine, University Medical Center, University of Leipzig, Leipzig, Germany;
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, German Center for Neurodegenerative Diseases, Bonn, Germany, and Institute of Neuroscience and Medicine, Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
10
|
Wang T, Zhang Y, Zhang X, Chen L, Zheng MQ, Zhang J, Brust P, Deuther-Conrad W, Huang Y, Jia H. Synthesis and characterization of the two enantiomers of a chiral sigma-1 receptor radioligand: (S)-(+)- and (R)-(-)-[18F]FBFP. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Holtschulte C, Börgel F, Westphälinger S, Schepmann D, Civenni G, Laurini E, Marson D, Catapano CV, Pricl S, Wünsch B. Synthesis of aminoethyl substituted piperidine derivatives as σ1 receptor ligands with antiproliferative properties. ChemMedChem 2022; 17:e202100735. [PMID: 35077612 PMCID: PMC9303367 DOI: 10.1002/cmdc.202100735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/17/2022] [Indexed: 12/05/2022]
Abstract
A series of novel σ1 receptor ligands with a 4‐(2‐aminoethyl)piperidine scaffold was prepared and biologically evaluated. The underlying concept of our project was the improvement of the lipophilic ligand efficiency of previously synthesized potent σ1 ligands. The key steps of the synthesis comprise the conjugate addition of phenylboronic acid at dihydropyridin‐4(1H)‐ones 7, homologation of the ketones 8 and introduction of diverse amino moieties and piperidine N‐substituents. 1‐Methylpiperidines showed particular high σ1 receptor affinity and selectivity over the σ2 subtype, whilst piperidines with a proton, a tosyl moiety or an ethyl moiety exhibited considerably lower σ1 affinity. Molecular dynamics simulations with per‐residue binding free energy deconvolution demonstrated that different interactions of the basic piperidine‐N‐atom and its substituents (or the cyclohexane ring) with the lipophilic binding pocket consisting of Leu105, Thr181, Leu182, Ala185, Leu186, Thr202 and Tyr206 are responsible for the different σ1 receptor affinities. Recorded logD7.4 and calculated clogP values of 4a and 18a indicate low lipophilicity and thus high lipophilic ligand efficiency. Piperidine 4a inhibited the growth of human non‐small cell lung cancer cells A427 to a similar extent as the σ1 antagonist haloperidol. 1‐Methylpiperidines 20a, 21a and 22a showed stronger antiproliferative effects on androgen negative human prostate cancer cells DU145 than the σ1 ligands NE100 and S1RA.
Collapse
Affiliation(s)
- Catharina Holtschulte
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Frederik Börgel
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Stefanie Westphälinger
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Gianluca Civenni
- Institute of Oncology ResearchUniversità della Svizzera Italiana (USI)Via Vincenzo Vela 66500BellinzonaSwitzerland
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEAUniversity of Trieste34127TriesteItaly
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEAUniversity of Trieste34127TriesteItaly
| | - Carlo V. Catapano
- Institute of Oncology ResearchUniversità della Svizzera Italiana (USI)Via Vincenzo Vela 66500BellinzonaSwitzerland
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEAUniversity of Trieste34127TriesteItaly
- Department of General BiophysicsFaculty of Biology and Environmental ProtectionUniversity of Lodz90-237LodzPoland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
- Chemical biology of ion channels (Chembion)Westfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| |
Collapse
|
12
|
Fallica AN, Pittalà V, Modica MN, Salerno L, Romeo G, Marrazzo A, Helal MA, Intagliata S. Recent Advances in the Development of Sigma Receptor Ligands as Cytotoxic Agents: A Medicinal Chemistry Perspective. J Med Chem 2021; 64:7926-7962. [PMID: 34076441 PMCID: PMC8279423 DOI: 10.1021/acs.jmedchem.0c02265] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Since their discovery
as distinct receptor proteins, the specific
physiopathological role of sigma receptors (σRs) has been deeply
investigated. It has been reported that these proteins, classified
into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation,
and tumor aggressiveness. As a result, the development of selective
σR ligands with potential antitumor properties attracted significant
attention as an emerging theme in cancer research. This perspective
deals with the recent advances of σR ligands as novel cytotoxic
agents, covering articles published between 2010 and 2020. An up-to-date
description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic
activities has been provided, including major pharmacophore models
and comprehensive structure–activity relationships for each
main class of σR ligands.
Collapse
Affiliation(s)
- Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, sixth of October, Giza 12578, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
13
|
Romeo G, Bonanno F, Wilson LL, Arena E, Modica MN, Pittalà V, Salerno L, Prezzavento O, McLaughlin JP, Intagliata S. Development of New Benzylpiperazine Derivatives as σ 1 Receptor Ligands with in Vivo Antinociceptive and Anti-Allodynic Effects. ACS Chem Neurosci 2021; 12:2003-2012. [PMID: 34019387 PMCID: PMC8291485 DOI: 10.1021/acschemneuro.1c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
σ-1 receptors (σ1R) modulate nociceptive signaling, driving the search for selective antagonists to take advantage of this promising target to treat pain. In this study, a new series of benzylpiperazinyl derivatives has been designed, synthesized, and characterized for their affinities toward σ1R and selectivity over the σ-2 receptor (σ2R). Notably, 3-cyclohexyl-1-{4-[(4-methoxyphenyl)methyl]piperazin-1-yl}propan-1-one (15) showed the highest σ1R receptor affinity (Ki σ1 = 1.6 nM) among the series with a significant improvement of the σ1R selectivity (Ki σ2/Ki σ1= 886) compared to the lead compound 8 (Ki σ2/Ki σ1= 432). Compound 15 was further tested in a mouse formalin assay of inflammatory pain and chronic nerve constriction injury (CCI) of neuropathic pain, where it produced dose-dependent (3-60 mg/kg, i.p.) antinociception and anti-allodynic effects. Moreover, compound 15 demonstrated no significant effects in a rotarod assay, suggesting that this σ1R antagonist did not produce sedation or impair locomotor responses. Overall, these results encourage the further development of our benzylpiperazine-based σ1R antagonists as potential therapeutics for chronic pain.
Collapse
Affiliation(s)
- Giuseppe Romeo
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Federica Bonanno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Lisa L. Wilson
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Emanuela Arena
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Maria N. Modica
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Jay P. McLaughlin
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Sebastiano Intagliata
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|