1
|
Phan-Xuan T, Breitung B, Dailey LA. Nanozymes for biomedical applications: Multi-metallic systems may improve activity but at the cost of higher toxicity? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1981. [PMID: 39044339 DOI: 10.1002/wnan.1981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Nanozymes are nanomaterials with intrinsic enzyme-like activity with selected advantages over native enzymes such as simple synthesis, controllable activity, high stability, and low cost. These materials have been explored as surrogates to natural enzymes in biosensing, therapeutics, environmental protection, and many other fields. Among different nanozymes classes, metal- and metal oxide-based nanozymes are the most widely studied. In recent years, bi- and tri-metallic nanomaterials have emerged often showing improved nanozyme activity, some of which even possess multifunctional enzyme-like activity. Taking this concept even further, high-entropy nanomaterials, that is, complex multicomponent alloys and ceramics like oxides, may potentially enhance activity even further. However, the addition of various elements to increase catalytic activity may come at the cost of increased toxicity. Since many nanozyme compositions are currently being explored for in vivo biomedical applications, such as cancer therapeutics, toxicity considerations in relation to nanozyme application in biomedicine are of vital importance for translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Thuong Phan-Xuan
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
- School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
| | - Ben Breitung
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Lea Ann Dailey
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Hua S, Dong X, Peng Q, Zhang K, Zhang X, Yang J. Single-atom nanozymes shines diagnostics of gastrointestinal diseases. J Nanobiotechnology 2024; 22:286. [PMID: 38796465 PMCID: PMC11127409 DOI: 10.1186/s12951-024-02569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Various clinical symptoms of digestive system, such as infectious, inflammatory, and malignant disorders, have a profound impact on the quality of life and overall health of patients. Therefore, the chase for more potent medicines is both highly significant and urgent. Nanozymes, a novel class of nanomaterials, amalgamate the biological properties of nanomaterials with the catalytic activity of enzymes, and have been engineered for various biomedical applications, including complex gastrointestinal diseases (GI). Particularly, because of their distinctive metal coordination structure and ability to maximize atom use efficiency, single-atom nanozymes (SAzymes) with atomically scattered metal centers are becoming a more viable substitute for natural enzymes. Traditional nanozyme design strategies are no longer able to meet the current requirements for efficient and diverse SAzymes design due to the diversification and complexity of preparation processes. As a result, this review emphasizes the design concept and the synthesis strategy of SAzymes, and corresponding bioenzyme-like activities, such as superoxide dismutase (SOD), peroxidase (POD), oxidase (OXD), catalase (CAT), and glutathione peroxidase (GPx). Then the various application of SAzymes in GI illnesses are summarized, which should encourage further research into nanozymes to achieve better application characteristics.
Collapse
Affiliation(s)
- Sijia Hua
- Zhejiang University of Chinese Medicine, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Xiulin Dong
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China
| | - Qiuxia Peng
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China
| | - Kun Zhang
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China.
| | - Xiaofeng Zhang
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| | - Jianfeng Yang
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
3
|
Wu P, Gong F, Feng X, Xia Y, Xia L, Kai T, Ding P. Multimetallic nanoparticles decorated metal-organic framework for boosting peroxidase-like catalytic activity and its application in point-of-care testing. J Nanobiotechnology 2023; 21:185. [PMID: 37296435 DOI: 10.1186/s12951-023-01946-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a sort of promising peroxidase-like nanozyme but face the challenge that the inorganic nodes in most of the MOF structures are generally blocked by the organic linkers. Further enhancement or activation of their peroxidase-like activity plays an important role in developing MOF-based nanozymes. Herein, a multimetallic nanoparticle (NP) decorated-MOF, Cu/Au/Pt NP decorated-Cu-TCPP(Fe) nanozyme (CuAuPt/Cu-TCPP(Fe)) was synthesized in situ and served as a peroxidase-like nanozyme. The peroxidase-like activity of this stable CuAuPt/Cu-TCPP(Fe) nanozyme was enhanced due to the decreased potential barriers for *OH generation in the catalytic process. Owing to the remarkable peroxidase-like activity, a CuAuPt/Cu-TCPP(Fe)-based colorimetric assay was established for the sensitive determination of H2O2 and glucose with the limit of detection (LOD) of 9.3 µM and 4.0 µM, respectively. In addition, a visual point-of-care testing (POCT) device was developed by integrating the CuAuPt/Cu-TCPP(Fe)-based test strips with a smartphone and was employed for a portable test of 20 clinical serum glucose samples. The results determined by this method agree well with the values deduced by clinical automatic biochemical analysis. This work not only represents an inspiration for the usage of MNP/MOF composite as a novel nanozyme for POCT diagnosis, but also provides a deeper insight and understanding into the enhanced enzyme-mimic effect of MNP-hybrid MOF composites, which in turn will guide the engineering of MOF-based functional nanomaterials. Graphical Abstract.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China
| | - Fangjie Gong
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China
| | - Xiangling Feng
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China
| | - Yong Xia
- Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Lehuan Xia
- Chenzhou Third People's Hospital, Chenzhou, Hunan, 423000, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China.
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China.
| |
Collapse
|
4
|
Synthesis of Mn-Prussian blue analogues with multi-enzyme activity and related application for alcohol detection. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Liang S, Tian X, Wang C. Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie. J Inflamm Res 2022; 15:6307-6328. [PMID: 36411826 PMCID: PMC9675353 DOI: 10.2147/jir.s383239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) may generate deleterious effects on biomolecules, such as DNA damage, protein oxidation and lipid peroxidation, causing cell and tissue damage and eventually leading to the pathogenesis of diseases, such as neurodegenerative diseases, ischemia/reperfusion ((I/R)) injury, and inflammatory diseases. Therefore, the modulation of ROS can be an efficient means to relieve the aforementioned diseases. Several studies have verified that antioxidants such as Mitoquinone (a mitochondrial-targeted coenzyme Q10 derivative) can scavenge ROS and attenuate related diseases. Nanozymes, defined as nanomaterials with intrinsic enzyme-like properties that also possess antioxidant properties, are hence expected to be promising alternatives for the treatment of ROS-related diseases. This review introduces the types of nanozymes with inherent antioxidant activities, elaborates on various strategies (eg, controlling the size or shape of nanozymes, regulating the composition of nanozymes and environmental factors) for modulating their catalytic activities, and summarizes their performances in treating ROS-induced diseases.
Collapse
Affiliation(s)
- Shufeng Liang
- Department of Molecular Biology, Shanxi Province Cancer Hospital/Shanxi Hospital, Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
- Institute of Environmental Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, People’s Republic of China
| | - Chunyan Wang
- Department of Transfusion, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
6
|
Stasyuk N, Demkiv O, Gayda G, Zakalska O, Zakalskiy A, Serkiz R, Kavetskyy T, Gonchar M. Reusable alcohol oxidase-nPtCu/alginate beads for highly sensitive ethanol assay in beverages. RSC Adv 2022; 12:21309-21317. [PMID: 35975038 PMCID: PMC9344902 DOI: 10.1039/d2ra02106d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/09/2022] [Indexed: 12/15/2022] Open
Abstract
Nanozymes (NZs) are nanoparticles that mimic the catalytic properties of natural enzymes. The present work aimed to obtain effective peroxidase mimetics (PO-like NZs), to characterize their morphological properties, estimate the kinetic parameters of NZs and evaluate the prospects of their application in analysis of ethanol. Herein, we have proposed a convenient spectrophotometric method for ethanol assay using reusable alginate beads enriched with alcohol oxidase (AO) and nanoparticles of PtCu (nPtCu) as PO-like NZs, and 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogen. The linear range for the proposed nPtCu-AO/alginate beads/TMB-based method is from 0.01 mM to 0.15 mM with a limit of detection of 3.3 μM ethanol. The method is used for the quantitative determination of ethanol in alcoholic beverages. The obtained results proved to be in a good correlation with the enzymatic reference method. These results highlight the potential of the nPtCu with PO-like activity in bioanalytical applications. The proposed method, being sensitive, economical and suitable for routine and micro-volume formats, can be used in clinical diagnostics for the detection of ethanol.
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv Ukraine
- Drohobych Ivan Franko State Pedagogical University Drohobych Ukraine
| | - Olha Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv Ukraine
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv Ukraine
| | - Oksana Zakalska
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv Ukraine
| | - Andriy Zakalskiy
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv Ukraine
- Institute of Animal Biology of the National Academy of Agrarian Sciences of Ukraine Lviv Ukraine
| | - Roman Serkiz
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv Ukraine
- Ivan Franko National University of Lviv, Department of Solid State Physics Lviv Ukraine
| | - Taras Kavetskyy
- Drohobych Ivan Franko State Pedagogical University Drohobych Ukraine
- The John Paul II Catholic University of Lublin 20-950 Lublin Poland
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv Ukraine
- Drohobych Ivan Franko State Pedagogical University Drohobych Ukraine
| |
Collapse
|
7
|
Hao J, Liu B, Maenosono S, Yang J. One-pot synthesis of Au-M@SiO 2 (M = Rh, Pd, Ir, Pt) core-shell nanoparticles as highly efficient catalysts for the reduction of 4-nitrophenol. Sci Rep 2022; 12:7615. [PMID: 35538150 PMCID: PMC9091199 DOI: 10.1038/s41598-022-11756-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022] Open
Abstract
The conversion of p-nitrophenol (4-NP) to p-aminophenol (4-AP) is of great significance for pharmaceutical and material manufacturing. In this work, Au-M@SiO2 (M = Rh, Pd, Ir, Pt) nanoparticles (NPs) with core-shell structures, which are expected to be excellent catalysts for the transformation of 4-NP to 4-AP, were synthesized by a facile one-pot one-step method. The structure and composition of the NPs were characterized through transmission electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. Au-M@SiO2 (M = Rh, Pd, Ir, Pt) core-shell NPs showed excellent catalytic activity in the reduction of 4-NP, which is superior to most catalysts reported in the previous literature. The enhanced catalytic activity of Au-M@SiO2 core-shell NPs is presumably related to the bimetallic synergistic effect. This study provides a simple strategy to synthesize core-shell bimetallic NPs for catalytic applications.
Collapse
Affiliation(s)
- Junfang Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China
| | - Bin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| | - Jianhui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
8
|
Nitrogen-doped carbon dots/Ni-MnFe-layered double hydroxides (N-CDs/Ni-MnFe-LDHs) hybrid nanomaterials as immunoassay label for low-density lipoprotein detection. Mikrochim Acta 2022; 189:72. [PMID: 35075569 DOI: 10.1007/s00604-022-05173-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023]
Abstract
Nitrogen-doped carbon dots/Ni-MnFe-layered double hydroxides (N-CDs/Ni-MnFe-LDHs) are demonstrated as superior peroxidase mimic antibody labels alternative to horseradish peroxidase (HRP) in an immunoassay, potentially overcoming some of the inherent disadvantages of HRP and other enzyme mimicking nanomaterials. They revealed efficient peroxidase-like activity and catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to form the intense blue product (at 620 nm) in the presence of hydrogen peroxide (H2O2). Using low-density lipoprotein (LDL) as a model target, an ultra-low limit of detection (0.0051 mg/dL) and a linear range of 0.0625-0.750 mg/dL were achieved, exhibiting higher sensitivity than the HRP-based immunoassay. Thus, the proposed N-CDs/Ni-MnFe-LDHs can be used as HRP mimicking analogs for developing highly sensitive colorimetric immunosensors for detection of biomarkers, as well as trace chemical analysis.
Collapse
|
9
|
Xu R, Wang Z, Liu S, Li H. Bimetallic AuRu aerogel with enzyme-like activity for colorimetric detection of Fe2+ and glucose. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Li X, Zhu H, Liu P, Wang M, Pan J, Qiu F, Ni L, Niu X. Realizing selective detection with nanozymes: Strategies and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116379] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Zhang L, Zhang Q, Liu Q, Wu X, Dong Y, Wang GL. Smart nanozyme of silver hexacyanoferrate with versatile bio-regulated activities for probing different targets. Talanta 2021; 228:122268. [PMID: 33773716 DOI: 10.1016/j.talanta.2021.122268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
Smart nanozymes that can be facile and rapidly produced, while with efficiently bio-regulated activity, are attractive for biosensing applications. Herein, a smart nanozyme, silver hexacyanoferrate (Ag4[Fe(CN)6]), was constructed in situ via the rapid, direct reaction between silver(I) and K4[Fe(CN)6]. And the activity of the nanozyme can be rationally modulated by different enzymatic reactions including the glucose oxidase (GOx, taken as a model oxidoreductase), alkaline phosphatase (ALP), and acetylcholinesterase (AChE). On the basis of which, a multiple function platform for the highly sensitive detection of glucose, ALP and AChE were developed through colorimetry. Corresponding detection limits for the above three targets were found to be as low as 0.32 μM, 3.3 U/L and 0.083 U/L (S/N = 3), respectively. The present study provides a novel nanozyme that can be produced in situ, which rules out the harsh, cumbersome, and time-consuming synthesis/purification procedures. In addition, it establishes a multiple function platform for the amplified detection of versatile targets by the aid of the developed nanozyme, whose detection has the advantages of low cost, ease-of-use, high sensitivity, and good selectivity.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qi Zhang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiuming Wu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|