1
|
Li C, Shen Z. Role of Solvents in Oriented Attachment of Ag Nanoparticles: Insights from Molecular Dynamics Simulations and Topological Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17423-17429. [PMID: 39129215 DOI: 10.1021/acs.langmuir.4c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Although the solvation force is considered one of the key forces behind the oriented attachment (OA), the precise roles of solvents in this process remain incompletely elucidated. In this study, we examined the effect of solvent polarities (water, acetone, and chloroform) on the attachment of silver nanoparticles by calculating the free energy curves for the OA process. The observed magnitudes of the binding energies and approaching and dissociation energy barriers are commensurate with the respective solvent polarities. Consequently, OA is more likely to occur in acetone with an intermediate permittivity relative to that of water and chloroform. Additionally, we identified a topological descriptor, namely, the Euler characteristic, of the solvent network, especially the water network, between two approaching surfaces, which manifests a linear correlation with the observed free energy profiles. This descriptor holds promise as a quantitative tool for predicting interactions between nanoparticles in solvent environments featuring hydrogen bond networks.
Collapse
Affiliation(s)
- Chong Li
- School of Environment and Ecology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu 412000, China
| | - Zhizhang Shen
- School of Environment and Ecology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu 412000, China
| |
Collapse
|
2
|
Zhang H, Khan MA, Yan T, Fichthorn KA. Size and temperature dependent shapes of copper nanocrystals using parallel tempering molecular dynamics. NANOSCALE 2024; 16:11146-11155. [PMID: 38506642 DOI: 10.1039/d4nr00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
We performed parallel-tempering molecular dynamics simulations to predict the temperature- and size-dependent equilibrium shapes of a series of Cu nanocrystals in the 100- to 200-atom size range. Our study indicates that temperature-dependent, solid-solid shape transitions occur frequently for Cu nanocrystals in this size range. Complementary calculations with electronic density functional theory indicate that vibrational entropy favors nanocrystals with a shape intermediate between a decahedron and an icosahedron. Overall, we find that entropy plays a significant role in determining the shapes Cu nanocrystals, so studies aimed at determining minimum-energy shapes may fail to correctly predict shapes observed at experimental temperatures. We also observe significant shape changes with nanocrystal size - sometimes with changes in a single atom. The information from this study could be useful in efforts to devise processing routes to achieve selective nanocrystal shapes.
Collapse
Affiliation(s)
- Huaizhong Zhang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Mohd Ahmed Khan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Tianyu Yan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Kristen A Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Zhang W, Zhang H, Li J, Zou X, Wang W, Hu H, Iqbal K, Zhou P, Ye W. PVP-capped silver nanoparticles for efficient SERS detection of adenine based on the stabilizing and enrichment roles of PVP. Mikrochim Acta 2023; 191:1. [PMID: 38040940 DOI: 10.1007/s00604-023-06047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/14/2023] [Indexed: 12/03/2023]
Abstract
A polyvinylpyrrolidone-capped (PVP-capped) strategy is reported to synthesize Ag NPs on silicon wafers via galvanic replacement reaction for SERS detection of adenine, where PVP acts as stabilizing agent in synthesis and efficient enrichment in detection. The morphologies of Ag NPs are optimized with uniform particle size by adjusting synthesis conditions, which hold excellent SERS performances like a high enhancement factor of 1.42 × 106, good uniform, reproducibility, and transferable nature. With the protection of the capped PVP, the Ag NPs keep excellent SERS properties even against harsh conditions of high temperature (100 ℃) and strong acid and base for 24 h. Utilizing the structural feature of PVP with abundant carbonyl groups, the PVP-capped Ag NPs achieve efficient enrichment of adenine through hydrogen bonding and π-interactions, which is analyzed by density functional theory. Quantitative detection of adenine is performed with a wide linear range from 10-4 to 10-8 M and a low limit of detection of 1 nM. Detection of adenine in human urine samples is achieved with a recovery of 99.1-103.4% and an RSD of less than 5%.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hairong Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Jiaxin Li
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xiangqing Zou
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Wanru Wang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Haiyan Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Kanwal Iqbal
- Department of Chemistry, Sardar Bahadur Khan Women's University, Quetta, 87300, Pakistan.
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China.
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Li D, Chen Q, Chun J, Fichthorn K, De Yoreo J, Zheng H. Nanoparticle Assembly and Oriented Attachment: Correlating Controlling Factors to the Resulting Structures. Chem Rev 2023; 123:3127-3159. [PMID: 36802554 DOI: 10.1021/acs.chemrev.2c00700] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Nanoparticle assembly and attachment are common pathways of crystal growth by which particles organize into larger scale materials with hierarchical structure and long-range order. In particular, oriented attachment (OA), which is a special type of particle assembly, has attracted great attention in recent years because of the wide range of material structures that result from this process, such as one-dimensional (1D) nanowires, two-dimensional (2D) sheets, three-dimensional (3D) branched structures, twinned crystals, defects, etc. Utilizing in situ transmission electron microscopy techniques, researchers observed orientation-specific forces that act over short distances (∼1 nm) from the particle surfaces and drive the OA process. Integrating recently developed 3D fast force mapping via atomic force microscopy with theories and simulations, researchers have resolved the near-surface solution structure, the molecular details of charge states at particle/fluid interfaces, inhomogeneity of surface charges, and dielectric/magnetic properties of particles that influence short- and long-range forces, such as electrostatic, van der Waals, hydration, and dipole-dipole forces. In this review, we discuss the fundamental principles for understanding particle assembly and attachment processes, and the controlling factors and resulting structures. We review recent progress in the field via examples of both experiments and modeling, and discuss current developments and the future outlook.
Collapse
Affiliation(s)
- Dongsheng Li
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Levich Institute and Department of Chemical Engineering, CUNY City College of New York; New York, New York 10031, United States
| | - Kristen Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University; University Park, Pennsylvania 16802, United States
| | - James De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle Washington 98195, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Legg BA, De Yoreo JJ. Effects of Size and Shape on the Tolerances for Misalignment and Probabilities for Successful Oriented Attachment of Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2985-2994. [PMID: 36787496 DOI: 10.1021/acs.langmuir.2c02789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oriented attachment (OA) of nanoparticles is an important pathway of crystal growth, but there is a lack of tools to model OA. Here, we present several simple models that relate the probability of achieving OA to basic geometric parameters, such as particle size, shape, and lattice periodicity. A Moiré-domain model is applied to understand twist misorientations between parallel surfaces, and it predicts that the range of twist angles yielding perfect OA is inversely related to the width of the contact area. This idea is explored further through a surface functional model, which investigates how patterns of crystallographic registration can drive the emergence of complex orientational energy landscapes. The energy landscapes are predicted to possess multiple local minima that can trap particles in imperfect alignments, and these local minima become deeper and more numerous as the contact area increases, which makes OA more challenging for large particles. A second set of models is presented to understand the sequence of events by which two crystallographic faces become coplanar after the collision. We use a central force approximation to predict the odds that two particle faces will attain coalignment when the particles collide with random misalignments, and we show that in the absence of special biasing forces, the probability of attaining alignment on a given face is roughly proportional to its solid angle as viewed from the center of the particle. The model thus predicts that OA is most favorable between well-faceted particles and becomes exceedingly unlikely for large spherical particles that express many microfacets.
Collapse
Affiliation(s)
- Benjamin A Legg
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Petersen N, Girard M, Riedinger A, Valsson O. The Crucial Role of Solvation Forces in the Steric Stabilization of Nanoplatelets. NANO LETTERS 2022; 22:9847-9853. [PMID: 36493312 PMCID: PMC9801426 DOI: 10.1021/acs.nanolett.2c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The steric stability of inorganic colloidal particles in an apolar solvent is usually described in terms of the balance between three contributions: the van der Waals attraction, the free energy of mixing, and the ligand compression. However, in the case of nanoparticles, the discrete nature of the ligand shell and the solvent has to be taken into account. Cadmium selenide nanoplatelets are a special case. They combine a weak van der Waals attraction and a large facet to particle size ratio. We use coarse grained molecular dynamics simulations of nanoplatelets in octane to demonstrate that solvation forces are strong enough to induce the formation of nanoplatelet stacks and by that have a crucial impact on the steric stability. In particular, we demonstrate that for sufficiently large nanoplatelets, solvation forces are proportional to the interacting facet area, and their strength is intrinsically tied to the softness of the ligand shell.
Collapse
Affiliation(s)
- Nanning Petersen
- Max
Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - Martin Girard
- Max
Planck Institute for Polymer Research, Mainz D-55128, Germany
| | | | - Omar Valsson
- Max
Planck Institute for Polymer Research, Mainz D-55128, Germany
- Department
of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
8
|
Nguyen QN, Wang C, Shang Y, Janssen A, Xia Y. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chem Rev 2022; 123:3693-3760. [PMID: 36547384 DOI: 10.1021/acs.chemrev.2c00468] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanocrystals offer a unique platform for tailoring the physicochemical properties of solid materials to enhance their performances in various applications. While most work on controlling their shapes revolves around symmetrical growth, the introduction of asymmetrical growth and thus symmetry breaking has also emerged as a powerful route to enrich metal nanocrystals with new shapes and complex morphologies as well as unprecedented properties and functionalities. The success of this route critically relies on our ability to lift the confinement on symmetry by the underlying unit cell of the crystal structure and/or the initial seed in a systematic manner. This Review aims to provide an account of recent progress in understanding and controlling asymmetrical growth and symmetry breaking in a colloidal synthesis of noble-metal nanocrystals. With a touch on both the nucleation and growth steps, we discuss a number of methods capable of generating seeds with diverse symmetry while achieving asymmetrical growth for mono-, bi-, and multimetallic systems. We then showcase a variety of symmetry-broken nanocrystals that have been reported, together with insights into their growth mechanisms. We also highlight their properties and applications and conclude with perspectives on future directions in developing this class of nanomaterials. It is hoped that the concepts and existing challenges outlined in this Review will drive further research into understanding and controlling the symmetry breaking process.
Collapse
Affiliation(s)
- Quynh N. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Yuxin Shang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Annemieke Janssen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia30332, United States
| |
Collapse
|
9
|
Ho TA, Rosso KM, Criscenti LJ. Atomistic Mismatch Defines Energy-Structure Relationships during Oriented Attachment of Nanoparticles. J Phys Chem Lett 2022; 13:9339-9347. [PMID: 36179321 DOI: 10.1021/acs.jpclett.2c02511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oriented attachment is an important crystal growth pathway in nature and has been extensively exploited to develop hierarchically structured crystalline materials. Atomistic mismatch in the crystal structure of two particles in the solvent-separated state creates forces that drive particle motions enabling solvent expulsion and coalescence, but the relative magnitudes of the energy barriers for approach, rotation, and translation are not well-known. Here we use classical molecular simulations to calculate the potential of mean force for these three different motions for basal surface encounters of gibbsite nanoplatelets separated by one water layer. In all cases, the highest energy barrier is associated with removing this last water layer to enable jump to contact, even when coaligned. Mutual rotation is more probable than sliding motion, which are both much more probable than jump to contact. This work provides the first comparison on an equal footing of the energy-structure relationships for multiple alignment paths between solvent-separated particles in bulk aqueous solution.
Collapse
Affiliation(s)
- Tuan A Ho
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico87185, United States
| | - Kevin M Rosso
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Louise J Criscenti
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico87185, United States
| |
Collapse
|
10
|
Yasui K. Merits and Demerits of ODE Modeling of Physicochemical Systems for Numerical Simulations. Molecules 2022; 27:5860. [PMID: 36144593 PMCID: PMC9505051 DOI: 10.3390/molecules27185860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
In comparison with the first-principles calculations mostly using partial differential equations (PDEs), numerical simulations with modeling by ordinary differential equations (ODEs) are sometimes superior in that they are computationally more economical and that important factors are more easily traced. However, a demerit of ODE modeling is the need of model validation through comparison with experimental data or results of the first-principles calculations. In the present review, examples of ODE modeling are reviewed such as sonochemical reactions inside a cavitation bubble, oriented attachment of nanocrystals, dynamic response of flexoelectric polarization, ultrasound-assisted sintering, and dynamics of a gas parcel in a thermoacoustic engine.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| |
Collapse
|
11
|
Qi X, Jin B, Cai B, Yan F, De Yoreo J, Chen CL, Pfaendtner J. Molecular Driving Force for Facet Selectivity of Sequence-Defined Amphiphilic Peptoids at Au-Water Interfaces. J Phys Chem B 2022; 126:5117-5126. [PMID: 35763341 DOI: 10.1021/acs.jpcb.2c02638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shape-controlled colloidal nanocrystal syntheses often require facet-selective solution-phase chemical additives to regulate surface free energy, atom addition/migration fluxes, or particle attachment rates. Because of their highly tunable properties and robustness to a wide range of experimental conditions, peptoids represent a very promising class of next-generation functional additives for control over nanocrystal growth. However, understanding the origin of facet selectivity at the molecular level is critical to generalizing their design. Herein we employ molecular dynamics simulations and biased sampling methods and report stronger selectivity to Au(111) than to Au(100) for Nce3Ncp6, a peptoid that has been shown to assist the formation of 5-fold twinned Au nanostars. We find that facet selectivity is achieved through synergistic effects of both peptoid-surface and solvent-surface interactions. Moreover, the amphiphilic nature of Nce3Ncp6 together with the order of peptoid-peptoid and peptoid-surface binding energies, that is, peptoid-Au(100) < peptoid-peptoid < peptoid-Au(111), further amplifies its distinct collective behavior on different Au surfaces. Our studies provide a fundamental understanding of the molecular origin of facet-selective adsorption and highlight the possibility of future designs and uses of sequence-defined peptoids for predictive syntheses of nanocrystals with designed shapes and properties.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Biao Jin
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bin Cai
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Feng Yan
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James De Yoreo
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Chen Z, Fichthorn KA. Adsorption of ethylenediamine on Cu surfaces: attributes of a successful capping molecule using first-principles calculations. NANOSCALE 2021; 13:13529-13537. [PMID: 34477757 DOI: 10.1039/d1nr03173b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The shape-controlled synthesis of Cu nanocrystals can benefit a wide range of applications, though challenges exist in achieving high and selective yields to a particular shape. Capping agents play a pivotal role in controlling shape, but their exact role remains ambiguous. In this study, the adsorption of ethylenediamine (EDA) on Cu(100) and Cu(111) was investigated with quantum density functional theory (DFT) to reveal the complex roles of EDA in promoting penta-twinned Cu nanowire growth. We find EDA has stronger binding on Cu(100) than on Cu(111), which agrees the general expectation that penta-twinned Cu nanowires express facets with stronger capping-molecule binding. Despite this stronger binding, ab initio thermodynamics reveals the surface energy of EDA-covered Cu(111) is lower than that EDA-covered Cu(100) at all solution-phase EDA chemical potentials, so there is no thermodynamic driving force for penta-twinned nanowires. We also investigated the capability of EDA to protect Cu surfaces from oxidation in water by quantifying energy barriers for a water molecule to diffuse through EDA layers on Cu(100) and Cu(111). The energy barrier on Cu(100) is significantly lower, which supports observations of faster oxidation of Cu(100) in electrochemical experiments. Thus, we elucidate another possible function of a capping agent - to enable selective oxidation of crystal facets. This finding adds to the general understanding of successful attributes of capping agents for shape-selective nanocrystal growth.
Collapse
Affiliation(s)
- Zihao Chen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
13
|
Zhang J, Ye S, Sun Y, Zhou F, Song J, Qu J. Soft-template assisted synthesis of hexagonal antimonene and bismuthene in colloidal solutions. NANOSCALE 2020; 12:20945-20951. [PMID: 33090167 DOI: 10.1039/d0nr05578f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoelemental two-dimensional (2D) group-VA materials have received increasing interest due to their great potential in optoelectronic applications. Despite numerous efforts have been made for their syntheses, the development of effective and better controllable synthetic approaches for the preparation of monoelemental 2D group-VA materials is still in its infancy. In this work, we report a soft-template approach for the synthesis of multilayered antimonene and bismuthene nanosheets in colloidal solutions. We show that the prepared antimonene and bismuthene nanosheets possess a well-defined rhombohedral crystal structure with impressive stability. We elucidate a formation pathway for the 2D nanosheets with small-angle X-ray diffraction (XRD) analysis. We demonstrate that SbCl3 dissolves in alkyl phosphonic acids to form a lamellar structure initially, which is apt for the formation of the final 2D morphology. The present study introduces a general route to synthesizing monoelemental 2D group-VA materials in colloidal solutions and gives a deeper insight into their growth mechanism.
Collapse
Affiliation(s)
- Jing Zhang
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Shuai Ye
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Yuan Sun
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Feifan Zhou
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Jun Song
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|