1
|
Liu C, Zhang X, Chen X, Liang L. Emerging Advances in Lanthanide Photon Avalanche Nanophotonics. NANO LETTERS 2024; 24:15489-15500. [PMID: 39576321 DOI: 10.1021/acs.nanolett.4c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Photon avalanche (PA) upconversion in lanthanide nanosystems represents a groundbreaking discovery, demonstrating an optical nonlinearity exceeding 50. This remarkable sensitivity to even the slightest light perturbations unlocks new possibilities for ultrasensitive biosensing, super-resolution imaging, and a range of other applications. This review delves into the fundamental mechanisms underlying PA and the approaches for controlling energy flow within these nanomaterials. We present innovative design strategies for optimizing optical dynamics tailored to specific applications. Furthermore, we critically assess the advantages and limitations of PA technology across diverse applications. In addition, we explore future directions, highlighting the key challenges and proposing pathways for further research. By enhancing the understanding of PA phenomena and encouraging interdisciplinary collaboration, this review seeks to foster ongoing innovation at the convergence of nanophotonics and materials science, pushing the boundaries of current capabilities in photonics research.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen, 361102, Fujian, China
| | - Xuanze Zhang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen, 361102, Fujian, China
| | - Xuan Chen
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen, 361102, Fujian, China
| | - Liangliang Liang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen, 361102, Fujian, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
2
|
Szalkowski M, Kotulska A, Dudek M, Korczak Z, Majak M, Marciniak L, Misiak M, Prorok K, Skripka A, Schuck PJ, Chan EM, Bednarkiewicz A. Advances in the photon avalanche luminescence of inorganic lanthanide-doped nanomaterials. Chem Soc Rev 2024. [PMID: 39660582 DOI: 10.1039/d4cs00177j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Photon avalanche (PA)-where the absorption of a single photon initiates a 'chain reaction' of additional absorption and energy transfer events within a material-is a highly nonlinear optical process that results in upconverted light emission with an exceptionally steep dependence on the illumination intensity. Over 40 years following the first demonstration of photon avalanche emission in lanthanide-doped bulk crystals, PA emission has been achieved in nanometer-scale colloidal particles. The scaling of PA to nanomaterials has resulted in significant and rapid advances, such as luminescence imaging beyond the diffraction limit of light, optical thermometry and force sensing with (sub)micron spatial resolution, and all-optical data storage and processing. In this review, we discuss the fundamental principles underpinning PA and survey the studies leading to the development of nanoscale PA. Finally, we offer a perspective on how this knowledge can be used for the development of next-generation PA nanomaterials optimized for a broad range of applications, including mid-IR imaging, luminescence thermometry, (bio)sensing, optical data processing and nanophotonics.
Collapse
Affiliation(s)
- Marcin Szalkowski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, ul. Grudziądzka 5, Poland
| | - Agata Kotulska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Magdalena Dudek
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Zuzanna Korczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Martyna Majak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Lukasz Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Malgorzata Misiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Katarzyna Prorok
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Artiom Skripka
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| |
Collapse
|
3
|
Majak M, Misiak M, Bednarkiewicz A. The mechanisms behind the extreme susceptibility of photon avalanche emission to quenching. MATERIALS HORIZONS 2024; 11:4791-4801. [PMID: 39037285 DOI: 10.1039/d4mh00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The photon avalanche (PA) process that emerges in lanthanide-doped crystals yields a threshold and highly nonlinear (of the power law order >5) optical response to photoexcitation. PA emission is the outcome of the excited-state absorption combined with a cross-relaxation process, which creates positive and efficient energy looping. In consequence, this combination of processes should be highly susceptible to small perturbations in energy distribution and can thus be hindered by other competitive "parasitic" processes such as energy transfer (ET) to quenching sites. Although luminescence quenching is a well-known phenomenon, exact mechanisms of the susceptibility of PA to resonant energy transfer (RET) remain poorly understood, limiting its practical applications. A deeper understanding of these mechanisms may pave the way to new areas of PA exploitation. This study focuses on the investigation of the LiYF4:3%Tm3+ PA system co-doped with Nd3+ acceptor ions, which are found to impact both the looping and emitting levels. This effectively disrupts the PA emission, causing an increase in the PA threshold (Ith) and a decrease in the PA nonlinearity (Smax). Our complementary modelling results reveal that ET from the looping level increases Ith and Smax, whereas ET from the emitting level diminishes Smax and the final emission intensity. Ultimately, significant PA emission quenching demonstrates a high relative sensitivity (SR) to infinitesimal amounts of Nd3+ acceptors, highlighting the potential for PA to be utilized as an ultra-sensitive, fluorescence-based reporting mechanism that is suitable for the detection and quantification of physical and biological phenomena or reactions.
Collapse
Affiliation(s)
- Martyna Majak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wroclaw, Poland.
| | - Małgorzata Misiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wroclaw, Poland.
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wroclaw, Poland.
| |
Collapse
|
4
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
5
|
Synak A, Kułak L, Bojarski P. Theoretical model of donor-donor and donor-acceptor energy transfer on a nanosphere. Sci Rep 2024; 14:18926. [PMID: 39147781 PMCID: PMC11327329 DOI: 10.1038/s41598-024-69718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
In this study, we introduce a novel advancement in the field of theoretical exploration. Specifically, we investigate the transfer and trapping of electronic excitations within a two-component disordered system confined to a finite volume. The implications of our research extend to energy transfer phenomena on spherical nanoparticles, characterized by randomly distributed donors and acceptors on their surface. Utilizing the three-body Padé approximant technique, previously employed in single-component systems, we apply it to address the challenge of trapping within our system. To validate the robustness of our model, we conduct Monte Carlo simulations on a donor-acceptor system positioned on a spherical nanoparticle. In particular, very good agreement between the model and Monte Carlo simulations has been found for donor fluorescence intensity decay.
Collapse
Affiliation(s)
- Anna Synak
- Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308, Gdańsk, Poland.
| | - Leszek Kułak
- Faculty of Technical Physics and Applied Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Piotr Bojarski
- Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308, Gdańsk, Poland
| |
Collapse
|
6
|
Jung H, Cho Y, Kang S, Nho HW, Kim Y, Kwon OH, Han SW. Upconversion Material-Plasmonic Metal-Semiconductor Ternary Heteronanostructures for Wide-Range Solar-to-Chemical Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2341-2350. [PMID: 38178695 DOI: 10.1021/acsami.3c16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Harvesting full-spectrum solar energy is a critical issue for developing high-performance photocatalysts. Here, we report a hierarchical heteronanostructure consisting of upconverting, plasmonic, and semiconducting materials as a solar-to-chemical energy conversion platform that can exploit a wide range of sunlight (from ultraviolet (UV) to near-infrared). Lanthanide-doped NaYF4 nanorod-spherical Au nanocrystals-TiO2 ternary hybrid nanostructures with a well-controlled configuration and intimate contact between the constituent materials could be synthesized by a wet-chemical method. Notably, the prepared ternary hybrids exhibited high photocatalytic activity for the H2 evolution reaction under simulated solar and near-infrared light irradiation due to their broadband photoresponsivity and strong optical interaction between the constituents. Through systematic studies on the mechanism of energy transfer during the photocatalysis of the ternary hybrids, we revealed that upconverted photon energy from the upconversion domain transfers to the Au and TiO2 domains primarily through the Förster resonance energy transfer process, resulting in enhanced photocatalysis.
Collapse
Affiliation(s)
- Hayoon Jung
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Youngsang Cho
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Sunghee Kang
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
| | - Yonghyeon Kim
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
7
|
Huang J, Xu S, Liu L, Zhang J, Xu J, Zhang L, Zhou X, Huang L, Peng J, Wang J, Gong Z, Chen Y. Targeted treatment of atherosclerosis with protein-polysaccharide nanoemulsion co-loaded with photosensitiser and upconversion nanoparticles. J Drug Target 2023; 31:1111-1127. [PMID: 37962293 DOI: 10.1080/1061186x.2023.2284093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Macrophages are the most abundant cell group in atherosclerosis (AS) lesions and play a vital role in all stages of AS progression. Recent research has shown that reactive oxygen species (ROS) generation from photodynamic therapy (PDT) induces macrophage autophagy to improve abnormal lipid metabolism and inflammatory environment. Especially in macrophage-derived foam cells, which has become a potential strategy for the treatment of AS. In this study, we prepared the conjugate (DB) of dextran (DEX) and bovine serum albumin (BSA). The DB was used as the emulsifier to prepare nanoemulsion loaded with upconversion nanoparticles (UCNPs) and chlorin e6 (Ce6) (UCNPs-Ce6@DB). The DEX modified on the surface of the nanoemulsion can recognise and bind to the scavenger receptor class A (SR-A) highly expressed on macrophages and promote the uptake of macrophage-derived foam cells in AS plates through SR-A-mediated endocytosis. In addition, UCNPs-Ce6@DB-mediated PDT enhanced ROS generation and induced autophagy in macrophage-derived foam cells, enhanced the expression of ABCA1, a protein closely related to cholesterol efflux, and inhibited the secretion of pro-inflammatory cytokines. Ultimately, UCNPs-Ce6@DB was shown to inhibit plaque formation in mouse models of AS. In conclusion, UCNPs-Ce6@DB offers a promising treatment for AS.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lina Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jinzhuan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lili Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiang Zhou
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lei Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianing Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Jiangsu, Nanjing, China
| | - Zipeng Gong
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Bednarkiewicz A, Szalkowski M, Majak M, Korczak Z, Misiak M, Maćkowski S. All-Optical Data Processing with Photon-Avalanching Nanocrystalline Photonic Synapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304390. [PMID: 37572370 DOI: 10.1002/adma.202304390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Data processing and storage in electronic devices are typically performed as a sequence of elementary binary operations. Alternative approaches, such as neuromorphic or reservoir computing, are rapidly gaining interest where data processing is relatively slow, but can be performed in a more comprehensive way or massively in parallel, like in neuronal circuits. Here, time-domain all-optical information processing capabilities of photon-avalanching (PA) nanoparticles at room temperature are discovered. Demonstrated functionality resembles properties found in neuronal synapses, such as: paired-pulse facilitation and short-term internal memory, in situ plasticity, multiple inputs processing, and all-or-nothing threshold response. The PA-memory-like behavior shows capability of machine-learning-algorithm-free feature extraction and further recognition of 2D patterns with simple 2 input artificial neural network. Additionally, high nonlinearity of luminescence intensity in response to photoexcitation mimics and enhances spike-timing-dependent plasticity that is coherent in nature with the way a sound source is localized in animal neuronal circuits. Not only are yet unexplored fundamental properties of photon-avalanche luminescence kinetics studied, but this approach, combined with recent achievements in photonics, light confinement and guiding, promises all-optical data processing, control, adaptive responsivity, and storage on photonic chips.
Collapse
Affiliation(s)
- Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, Wroclaw, 50-422, Poland
| | - Marcin Szalkowski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, Wroclaw, 50-422, Poland
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100, Toruń, ul. Grudziądzka 5, Poland
| | - Martyna Majak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, Wroclaw, 50-422, Poland
| | - Zuzanna Korczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, Wroclaw, 50-422, Poland
| | - Małgorzata Misiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, Wroclaw, 50-422, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100, Toruń, ul. Grudziądzka 5, Poland
| |
Collapse
|
9
|
Skripka A, Lee M, Qi X, Pan JA, Yang H, Lee C, Schuck PJ, Cohen BE, Jaque D, Chan EM. A Generalized Approach to Photon Avalanche Upconversion in Luminescent Nanocrystals. NANO LETTERS 2023; 23:7100-7106. [PMID: 37471584 DOI: 10.1021/acs.nanolett.3c01955] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Photon avalanching nanoparticles (ANPs) exhibit extremely nonlinear upconverted emission valuable for subdiffraction imaging, nanoscale sensing, and optical computing. Avalanching has been demonstrated with Tm3+-, Pr3+-, or Nd3+-doped nanocrystals, but their emission is limited to a few wavelengths and materials. Here, we utilize Gd3+-assisted energy migration to tune the emission wavelengths of Tm3+-sensitized ANPs and generate highly nonlinear emission from Eu3+, Tb3+, Ho3+, and Er3+ ions. The upconversion intensities of these spectrally discrete ANPs scale with nonlinearity factor s = 10-17 under 1064 nm excitation at power densities as low as 7 kW cm-2. This strategy for imprinting avalanche behavior on remote emitters can be extended to fluorophores adjacent to ANPs, as we demonstrate with CdS/CdSe/CdS core/shell/shell quantum dots. ANPs with rationally designed energy transfer networks provide the means to transform conventional linear emitters into a highly nonlinear ones, expanding the use of photon avalanching in biological, chemical, and photonic applications.
Collapse
Affiliation(s)
- Artiom Skripka
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Minji Lee
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Xiao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jia-Ahn Pan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haoran Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley California, 94720, United States
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
11
|
Bagot CC, Rappeport E, Das A, BaTis T, Park W. True FRET-based sensing of pH via Separation of FRET and Photon Reabsorption. ADVANCED OPTICAL MATERIALS 2022; 10:2200242. [PMID: 38938524 PMCID: PMC11210210 DOI: 10.1002/adom.202200242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/29/2024]
Abstract
Förster Resonance Energy Transfer (FRET)-based devices have been extensively researched as potential biosensors due to their highly localized responsivity. In particular, dye-conjugated upconverting nanoparticles (UCNPs) are among the most promising FRET-based sensor candidates. UCNPs have a multi-modal emission profile that allows for ratiometric sensing, and by conjugating a biosensitive dye to their surface, this profile can be used to measure localized variations in biological parameters. However, the complex nature of the UCNP energy profile as well as reabsorption of emitted photons must be taken into account in order to properly sense the target parameters. To our knowledge, no proposed UCNP-based sensor has accurately taken care of these intricacies. In this article, we account for these complexities by creating a FRET-based sensor that measures pH. This sensor utilizes Thulium (Tm 3 + )-doped UCNPs and the fluorescent dye Fluorescein Isothiocyanate (FITC). We first demonstrate that photon reabsorption is a serious issue for the 475 nmTm 3 + emission, thereby limiting its use in FRET-based sensing. We then show that by taking the ratio of the 646 and 800 nm emissions rather than the more popular 475 nm one, we are able to measure pH exclusively through FRET.
Collapse
Affiliation(s)
| | - Eric Rappeport
- University of Colorado, Department of Electrical, Computer, and Energy Engineering
| | - Ananda Das
- University of Colorado, Department of Physics
| | - Taleb BaTis
- University of Colorado, Materials Science and Engineering Program
| | - Wounjhang Park
- University of Colorado, Department of Electrical, Computer, and Energy Engineering
- University of Colorado, Materials Science and Engineering Program
| |
Collapse
|
12
|
Pilch-Wrobel A, Kotulska AM, Lahtinen S, Soukka T, Bednarkiewicz A. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200464. [PMID: 35355389 DOI: 10.1002/smll.202200464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 05/08/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio-imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo-bleaching, spectral cross-excitation, and emission bleed-through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay-based analysis of D-A interaction. In this work, the assessment of designed virtual core-shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy-transfer and energy migration between lanthanide ion dopants and how the architecture of core-shell UCNPs affects their performance as FRET donors to organic acceptor dyes.
Collapse
Affiliation(s)
- Aleksandra Pilch-Wrobel
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Agata Maria Kotulska
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Artur Bednarkiewicz
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| |
Collapse
|
13
|
Liang Y, Zhu Z, Qiao S, Guo X, Pu R, Tang H, Liu H, Dong H, Peng T, Sun LD, Widengren J, Zhan Q. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. NATURE NANOTECHNOLOGY 2022; 17:524-530. [PMID: 35469009 DOI: 10.1038/s41565-022-01101-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
A photon avalanche (PA) effect that occurs in lanthanide-doped solids gives rise to a giant nonlinear response in the luminescence intensity to the excitation light intensity. As a result, much weaker lasers are needed to evoke such PAs than for other nonlinear optical processes. Photon avalanches are mostly restricted to bulk materials and conventionally rely on sophisticated excitation schemes, specific for each individual system. Here we show a universal strategy, based on a migrating photon avalanche (MPA) mechanism, to generate huge optical nonlinearities from various lanthanide emitters located in multilayer core/shell nanostructrues. The core of the MPA nanoparticle, composed of Yb3+ and Pr3+ ions, activates avalanche looping cycles, where PAs are synchronously achieved for both Yb3+ and Pr3+ ions under 852 nm laser excitation. These nanocrystals exhibit a 26th-order nonlinearity and a clear pumping threshold of 60 kW cm-2. In addition, we demonstrate that the avalanching Yb3+ ions can migrate their optical nonlinear response to other emitters (for example, Ho3+ and Tm3+) located in the outer shell layer, resulting in an even higher-order nonlinearity (up to the 46th for Tm3+) due to further cascading multiplicative effects. Our strategy therefore provides a facile route to achieve giant optical nonlinearity in different emitters. Finally, we also demonstrate applicability of MPA emitters to bioimaging, achieving a lateral resolution of ~62 nm using one low-power 852 nm continuous-wave laser beam.
Collapse
Affiliation(s)
- Yusen Liang
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Zhimin Zhu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Shuqian Qiao
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Xin Guo
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Rui Pu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Huan Tang
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Haichun Liu
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Tingting Peng
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China.
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Normal University, Guangzhou, P. R. China.
| |
Collapse
|
14
|
Dubey N, Chandra S. Upconversion nanoparticles: Recent strategies and mechanism based applications. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|