1
|
Joshi VP, Kumar N, Pathak PK, Tamboli MS, Truong NTN, Kim CD, Kalubarme RS, Salunkhe RR. Ionic-Liquid-Assisted Synthesis of Mixed-Phase Manganese Oxide Nanorods for a High-Performance Aqueous Zinc-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24366-24376. [PMID: 37186545 DOI: 10.1021/acsami.3c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) provide a safer and cost-effective energy storage solution by utilizing nonflammable water-based electrolytes. Although many research efforts are focused on optimizing zinc anode materials, developing suitable cathode materials is still challenging. In this study, one-dimensional, mixed-phase MnO2 nanorods are synthesized using ionic liquid (IL). Here, the IL acts as a structure-directing agent that modifies MnO2 morphology and introduces mixed phases, as confirmed by morphological, structural, and X-ray photoelectron spectroscopy (XPS) studies. The MnO2 nanorods developed by this method are utilized as a cathode material for ZIB application in the coin-cell configuration. As expected, Zn//MnO2 nanorods show a significant increase in their capacity to 347 Wh kg-1 at 100 mA g-1, which is better than bare MnO2 nanowires (207.1 Wh kg-1) synthesized by the chemical precipitation method. The battery is highly rechargeable and maintains good retention of 86% of the initial capacity and 99% Coulombic efficiency after 800 cycles at 1000 mA g-1. The ex situ XPS, X-ray diffraction, and in-depth electrochemical analysis confirm that MnO6 octahedra experience insertion/extraction of Zn2+ with high reversibility. This study suggests the potential use of MnO2 nanorods to develop high-performance and durable battery electrode materials suitable for large-scale applications.
Collapse
Affiliation(s)
- Ved Prakash Joshi
- Department of Physics, Indian Institute of Technology, Jammu, Jammu and Kashmir 181221, India
| | - Nitish Kumar
- Department of Physics, Indian Institute of Technology, Jammu, Jammu and Kashmir 181221, India
| | - Prakash Kumar Pathak
- Department of Physics, Indian Institute of Technology, Jammu, Jammu and Kashmir 181221, India
| | - Mohaseen S Tamboli
- Korea Institute of Energy Technology (KENTECH), 200 Hyeokshin-ro, Naju, Jeollanam-do 58330, Republic of Korea
| | - Nguyen Tam Nguyen Truong
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Chang Duk Kim
- Department of Physics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Ramchandra S Kalubarme
- Centre for Materials for Electronic Technology, Panchawati, Off. Pashan Road, Pune 411008, India
| | - Rahul R Salunkhe
- Department of Physics, Indian Institute of Technology, Jammu, Jammu and Kashmir 181221, India
| |
Collapse
|
2
|
Dhungana P, Varapragasam SJP, Vemuri B, Baride A, Shrestha N, Balasingam M, Gadhamshetty V, Koppang MD, Hoefelmeyer JD. A pH‐Universal Hollow‐Mn
3
O
4
/MWCNT/Nafion™ Modified Glassy Carbon Electrode for Electrochemical Oxygen Reduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pramod Dhungana
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| | | | - Bhuvan Vemuri
- South Dakota School of Mines & Technology 501 E. St. Joseph St. Rapid City SD 57701 USA
| | - Aravind Baride
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| | - Namita Shrestha
- South Dakota School of Mines & Technology 501 E. St. Joseph St. Rapid City SD 57701 USA
| | - Mithira Balasingam
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| | | | - Miles D. Koppang
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| | - James D. Hoefelmeyer
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| |
Collapse
|
3
|
He Y, Aasen D, McDougall A, Yu H, Labbe M, Ni C, Milliken S, Ivey DG, Veinot JGC. Hollow Mesoporous Carbon Nanospheres Decorated with Metal Oxide Nanoparticles as Efficient Earth‐Abundant Zinc‐Air Battery Catalysts. ChemElectroChem 2021. [DOI: 10.1002/celc.202001526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingjie He
- Department of Chemistry University of Alberta 11227 Saskatchewan Drive T6G 2G2 Edmonton Alberta Canada
| | - Drew Aasen
- Department of Chemical and Materials Engineering University of Alberta 9211 116 St T6G 1H9 Edmonton Alberta Canada
| | - Alexandra McDougall
- Department of Chemical and Materials Engineering University of Alberta 9211 116 St T6G 1H9 Edmonton Alberta Canada
| | - Haoyang Yu
- Department of Chemistry University of Alberta 11227 Saskatchewan Drive T6G 2G2 Edmonton Alberta Canada
| | - Matthew Labbe
- Department of Chemical and Materials Engineering University of Alberta 9211 116 St T6G 1H9 Edmonton Alberta Canada
| | - Chuyi Ni
- Department of Chemistry University of Alberta 11227 Saskatchewan Drive T6G 2G2 Edmonton Alberta Canada
| | - Sarah Milliken
- Department of Chemistry University of Alberta 11227 Saskatchewan Drive T6G 2G2 Edmonton Alberta Canada
| | - Douglas G. Ivey
- Department of Chemical and Materials Engineering University of Alberta 9211 116 St T6G 1H9 Edmonton Alberta Canada
| | - Jonathan G. C. Veinot
- Department of Chemistry University of Alberta 11227 Saskatchewan Drive T6G 2G2 Edmonton Alberta Canada
| |
Collapse
|