1
|
Wu J, Shao Y, Hua X, Wang Y, Wang D. Nanoplastic at environmentally relevant concentrations induces toxicity across multiple generations associated with inhibition in germline G protein-coupled receptor CED-1 in Caenorhabditis elegans. CHEMOSPHERE 2024; 364:143011. [PMID: 39098352 DOI: 10.1016/j.chemosphere.2024.143011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Nanoplastics at environmentally relevant concentrations (ERCs) could cause transgenerational toxicity on organisms. Caenorhabditis elegans is an important model for the study of transgenerational toxicology of pollutants. Nevertheless, the underlying mechanisms for the control of transgenerational nanoplastic toxicity by germline signals remain largely unclear. In C. elegans, exposure to 1-100 μg/L polystyrene nanoparticle (PS-NP) decreased expression of germline ced-1 encoding a G protein-coupled receptor at parental generation (P0-G). After PS-NP exposure at P0-G, transgenerational decrease in germline ced-1 expression could be detected. Meanwhile, the susceptibility to transgenerational PS-NP toxicity was observed in ced-1(RNAi) animals. After PS-NP exposure at P0-G, germline RNAi of ced-1 increased expressions of met-2 and set-6 encoding histone methylation transferases. The susceptibility of ced-1(RNAi) to transgenerational PS-NP toxicity could be inhibited by RNAi of met-2 and set-6. Moreover, in PS-NP exposed met-2(RNAi) and set-6(RNAi) nematodes, expressions of ins-39, wrt-3, and/or efn-3 encoding secreted ligands were decreased. Therefore, our results demonstrated that inhibition in germline CED-1 mediated the toxicity induction of nanoplastics at ERCs across multiple generations in nematodes.
Collapse
Affiliation(s)
- Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuting Shao
- School of Public Health, Southeast University, Nanjing, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Liu H, Wu Y, Wang Z. Long-term exposure to polystyrene nanoparticles at environmentally relevant concentration causes suppression in heme homeostasis signal associated with transgenerational toxicity induction in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132124. [PMID: 37499489 DOI: 10.1016/j.jhazmat.2023.132124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Heme homeostasis related signaling participates in inducing a protective response when controlling nanopolystyrene toxic effects in parental generation. However, whether the heme homeostasis signal is involved in regulation of transgenerational toxicity of nanopolystyrene toxicity is still unclear. Herein, with the model organism of Caenorhabditis elegans, 0.1-10 μg/L nanopolystyrene particles (PS-NPs) at 20-nm treatment downregulated glb-18, and the decrease was also discovered in the offspring following PS-NPs exposure. Germline glb-18 RNAi induced susceptive property to transgenerational PS-NPs toxicity, suggesting that a decreased GLB-18 level mediated induction of transgenerational toxicity. Importantly, germline GLB-18 transgenerationally activated the function of intestinal HRG-4 in controlling transgenerational PS-NPs toxicity. In transgenerational toxicity control, HRG-1/ATFS-1/HSP-6 was recognized to be the downstream pathway of HRG-4. Briefly, germline GLB-18 in P0 generation can transgenerationally activate the downstream intestinal HRG-4/HRG-1/ATFS-1/HSP-6 pathway among offspring for controlling the transgenerational toxicity of PS-NPs. Findings in the present work strengthens the possible association of heme homeostasis signal changes with transgenerational nanoplastic toxicity within the organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Wu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Jiang Y, Li Y, Fu X, Wu Y, Wang R, Zhao M, Mao C, Shi S. Interplay between G protein-coupled receptors and nanotechnology. Acta Biomater 2023; 169:1-18. [PMID: 37517621 DOI: 10.1016/j.actbio.2023.07.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
G protein-coupled receptors (GPCRs), as the largest family of membrane receptors, actively modulate plasma membrane and endosomal signalling. Importantly, GPCRs are naturally nanosized, and spontaneously formed nanoaggregates of GPCRs (natural nano-GPCRs) may enhance GPCR-related signalling and functions. Although GPCRs are the molecular targets of the majority of marketed drugs, the poor pharmacokinetics and physicochemical properties of GPCR ligands greatly limit their clinical applicability. Nanotechnology, as versatile techniques, can encapsulate GPCR ligands to assemble synthetic nano-GPCRs to overcome their obstacles, robustly elevating drug efficacy and safety. Moreover, endosomal delivery of GPCR ligands by nanoparticles can precisely initiate sustained endosomal signal transduction, while nanotechnology has been widely utilized for isolation, diagnosis, and detection of GPCRs. In turn, due to overexpression of GPCRs on the surface of various types of cells, GPCR ligands can endow nanoparticles with active targeting capacity for specific cells via ligand-receptor binding and mediate receptor-dependent endocytosis of nanoparticles. This significantly enhances the potency of nanoparticle delivery systems. Therefore, emerging evidence has revealed the interplay between GPCRs and nanoparticles, although investigations into their relationship have been inadequate. This review aims to summarize the interaction between GPCRs and nanotechnology for understanding their mutual influences and utilizing their interplay for biomedical applications. It will provide a fundamental platform for developing powerful and safe GPCR-targeted drugs and nanoparticle systems. STATEMENT OF SIGNIFICANCE: GPCRs as molecular targets for the majority of marketed drugs are naturally nanosized, and even spontaneously form nano aggregations (nano-GPCRs). Nanotechnology has also been applied to construct synthetic nano-GPCRs or detect GPCRs, while endosomal delivery of GPCR ligands by nanoparticles can magnify endosomal signalling. Meanwhile, molecular engineering of nanoparticles with GPCRs or their ligands can modulate membrane binding and endocytosis, powerfully improving the efficacy of nanoparticle system. However, there are rare summaries on the interaction between GPCRs and nanoparticles. This review will not only provide a versatile platform for utilizing nanoparticles to modulate or detect GPCRs, but also facilitate better understanding of the designated value of GPCRs for molecular engineering of biomaterials with GPCRs in therapeutical application.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Wu Y, Tan X, Shi X, Han P, Liu H. Combined Effects of Micro- and Nanoplastics at the Predicted Environmental Concentration on Functional State of Intestinal Barrier in Caenorhabditis elegans. TOXICS 2023; 11:653. [PMID: 37624159 PMCID: PMC10459583 DOI: 10.3390/toxics11080653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
The possible toxicity caused by nanoplastics or microplastics on organisms has been extensively studied. However, the unavoidably combined effects of nanoplastics and microplastics on organisms, particularly intestinal toxicity, are rarely clear. Here, we employed Caenorhabditis elegans to investigate the combined effects of PS-50 (50 nm nanopolystyrene) and PS-500 (500 nm micropolystyrene) at environmentally relevant concentrations on the functional state of the intestinal barrier. Environmentally, after long-term treatment (4.5 days), coexposure to PS-50 (10 and 15 μg/L) and PS-500 (1 μg/L) resulted in more severe formation of toxicity in decreasing locomotion behavior, in inhibiting brood size, in inducing intestinal ROS production, and in inducting intestinal autofluorescence production, compared with single-exposure to PS-50 (10 and 15 μg/L) or PS-500 (1 μg/L). Additionally, coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L) remarkably caused an enhancement in intestinal permeability, but no detectable abnormality of intestinal morphology was observed in wild-type nematodes. Lastly, the downregulation of acs-22 or erm-1 expression and the upregulation expressions of genes required for controlling oxidative stress (sod-2, sod-3, isp-1, clk-1, gas-1, and ctl-3) served as a molecular basis to strongly explain the formation of intestinal toxicity caused by coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L). Our results suggested that combined exposure to microplastics and nanoplastics at the predicted environmental concentration causes intestinal toxicity by affecting the functional state of the intestinal barrier in organisms.
Collapse
Affiliation(s)
| | | | | | | | - Huanliang Liu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Yang R, Ge P, Liu X, Chen W, Yan Z, Chen M. Chemical Composition and Transgenerational Effects on Caenorhabditis elegans of Seasonal Fine Particulate Matter. TOXICS 2023; 11:116. [PMID: 36850991 PMCID: PMC9964627 DOI: 10.3390/toxics11020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
While numerous studies have demonstrated the adverse effects of fine particulate matter (PM) on human health, little attention has been paid to its impact on offspring health. The multigenerational toxic effects on Caenorhabditis elegans (C. elegans) were investigated by acute exposure. PM2.5 and PM1 samples were collected and analysed for their chemical composition (inorganic ions, metals, OM, PAHs) in different seasons from April 2019 to January 2020 in Lin'an, China. A higher proportion of organic carbon components (34.3%, 35.9%) and PAHs (0.0144%, 0.0200%) occupied the PM2.5 and PM1 samples in winter, respectively. PM1 in summer was enriched with some metal elements (2.7%). Exposure to fine PM caused developmental slowing and increased germ cell apoptosis, as well as inducing intestinal autofluorescence and reactive oxygen species (ROS) production. PM1 caused stronger toxic effects than PM2.5. The correlation between PM component and F0 generation toxicity index was analysed. Body length, germ cell apoptosis and intestinal autofluorescence were all highly correlated with Cu, As, Pb, OC and PAHs, most strongly with PAHs. The highest correlation coefficients between ROS and each component are SO42- (R = 0.743), Cd (R = 0.816) and OC (R = 0.716). The results imply that OC, PAHs and some transition metals play an important role in the toxicity of fine PM to C. elegans, where the organic fraction may be the key toxicogenic component. The multigenerational studies show that PM toxicity can be passed from parent to offspring, and gradually returns to control levels in the F3-F4 generation with germ cell apoptosis being restored in the F4 generation. Therefore, the adverse effects of PM on reproductive damage are more profound.
Collapse
|
6
|
Xu R, Hua X, Rui Q, Wang D. Polystyrene nanoparticles cause dynamic alteration in mitochondrial unfolded protein response from parents to the offspring in C. elegans. CHEMOSPHERE 2022; 308:136154. [PMID: 36029865 DOI: 10.1016/j.chemosphere.2022.136154] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 05/21/2023]
Abstract
The mitochondrial unfolded protein response (mt UPR) is important for organisms against the toxicity from toxicants and stresses. Polystyrene nanoparticle (PS-NP), one of the emerging pollutants, has aroused increasing concern for its toxicity in the offspring. Nevertheless, the molecular basis for this transgenerational toxicity remains largely unclear. In this study, the role of mt UPR in the induction of transgenerational toxicity was determined in Caenorhabditis elegans (C. elegans) after parental exposure to PS-NP. After exposure to PS-NP (1-100 μg/L), the suppression in mt UPR showed the concentration-dependent in nematodes from P0 generation (P0-G) to F2-G. Moreover, the decreased expression of genes required for controlling mt UPR (atfs-1, dve-1, and ubl-5 genes) were observed from P0-G to F2-G after exposure to PS-NP (1 μg/L). The adverse effects on locomotion and reproductive capacity were more severe over generations in nematodes with RNAi of these three genes, indicating that these genes were involved in controlling transgenerational toxicity. After parental PS-NP exposure (1 μg/L), the mt UPR was significantly inhibited by RNAi of atfs-1, dve-1, and ubl-5, indicating the association between the transgenerational PS-NP toxicity and mt UPR suppression. Additionally, during the transgenerational process, RNAi of atfs-1, dve-1, and ubl-5 enhanced the PS-NP toxicity by suppressing mt UPR, while RNAi of daf-2 encoding an insulin receptor inhibited the PS-NP toxicity by increasing mt UPR. Therefore, our data highlighted the role of inhibition in mt UPR in mediating the transgenerational nanoplastic toxicity in nematodes.
Collapse
Affiliation(s)
- Ruoran Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Liu H, Zhao Y, Hua X, Wang D. Induction of transgenerational toxicity is associated with the activated germline insulin signals in nematodes exposed to nanoplastic at predicted environmental concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114022. [PMID: 36030687 DOI: 10.1016/j.ecoenv.2022.114022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 05/21/2023]
Abstract
Exposure to nanoplastics can induce toxicity on organisms at both parental generation (P0-G) and the offspring. However, the underlying mechanism remains unknown. Using Caenorhabditis elegans as a model organism, exposure to 20-nm polystyrene nanoparticle (PS-NP) (1-100 μg/L) upregulated the expressions of insulin ligands (INS-39, INS-3, and DAF-28), and this increase could be further detected in the offspring after PS-NP exposure. Germline ins-39, ins-3, and daf-28 RNAi induced resistance to transgenerational toxicity of PS-NP, indicating that increase in expression of these three insulin ligands mediated induction of transgenerational toxicity. These three insulin ligands transgenerationally activated function of insulin receptor DAF-2 to control transgenerational toxicity of PS-NP. Exposure to 1-100 μg/L PS-NP further upregulated DAF-2, AGE-1, and AKT-1 expressions and downregulated DAF-16 expression. During transgenerational toxicity control, DAF-16/AKT-1/AGE-1 was identified as downstream signaling cascade of DAF-2. Moreover, transcriptional factor DAF-16 activated two downstream targets of HSP-6 (a mitochondrial UPR marker) and SOD-3 (a mitochondrial SOD) to modulate transgenerational toxicity of PS-NP. Our findings indicate a crucial link between activation of insulin signaling and induction of transgenerational toxicity of nanoplastics at low concentrations in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Medical School, Southeast University, Nanjing 210009, China
| | - Yunli Zhao
- Medical School, Southeast University, Nanjing 210009, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
8
|
Hua X, Zhao Y, Yuan Y, Zhang L, Bian Q, Wang D. Nanoplastics cause transgenerational toxicity through inhibiting germline microRNA mir-38 in C. elegans. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129302. [PMID: 35716568 DOI: 10.1016/j.jhazmat.2022.129302] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 05/21/2023]
Abstract
Nanoplastic exposure potentially caused the induction of transgenerational toxicity. Nevertheless, the molecular basis for nanoplastic exposure-induced transgenerational toxicity remains largely unclear. Using Caenorhabditis elegans as an animal model, we examined the role of germline microRNA (miRNA) mir-38 in regulating the transgenerational toxicity of polystyrene nanoparticles (PS-NPs). After the exposure, 1-100 μg/L PS-NP decreased expression of germline mir-38. Meanwhile, germline mir-38 overexpression conferred a resistance to transgenerational PS-NP toxicity, which suggested that the decrease in germline mir-38 mediated the induction of transgenerational PS-NP toxicity. In the germline, mir-38 regulated transgenerational PS-NP toxicity by inhibiting activity of downstream targets (NDK-1, NHL-2, and WRT-3). Among these three downstream targets, germline NDK-1 further controlled transgenerational PS-NP toxicity by suppressing the function of KSR-1/2, two kinase suppressors of Ras. Therefore, in the germline, the decrease in mir-38 mediated induction of transgenerational PS-NP toxicity by at least inhibiting signaling cascade of NDK-1-KSR-1/2 in nematodes. The findings in this study are helpful for providing relevantly molecular endpoints to assess potential transgenerational toxicity of nanoplastics.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yue Zhao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yujie Yuan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Le Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
9
|
Zhao Y, Xu R, Hua X, Rui Q, Wang D. Multi-walled carbon nanotubes induce transgenerational toxicity associated with activation of germline long non-coding RNA linc-7 in C.elegans. CHEMOSPHERE 2022; 301:134687. [PMID: 35472608 DOI: 10.1016/j.chemosphere.2022.134687] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
With the increase in application, multi-walled carbon nanotubes (MWCNTs) are potentially bioavailable to environmental organisms. However, the potential transgenerational effect of MWCNTs and underlying mechanisms remains still unclear. Here, we examined transgenerational MWCNT toxicity and the underlying mechanism mediated by germline long non-coding RNAs (lncRNAs) in Caenorhabditis elegans. Exposure to 0.1-10 μg/L MWCNT caused transgenerational toxicity reflected by endpoints of brood size and locomotion behavior. Meanwhile, among germline lncRNAs, expression of 5 lncRNAs were dysregulated by MWCNT exposure. Among these 5 dysregulated lncRNAs, only germline RNAi of linc-7 affected MWCNT toxicity. Increase in germline linc-7 expression was observed transgenerationally, and transgenerational MWCNT toxicity was prevented in linc-7(RNAi) nematodes. Moreover, germline linc-7 controlled transgenerational MWCNT toxicity by activating downstream DAF-12, a transcriptional factor. Therefore, our data indicated the association between induction of transgenerational MWCNT toxicity and increase in germline linc-7 expression in organisms.
Collapse
Affiliation(s)
- Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruoran Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Zhang L, Wang S, Zhao Y, Nurdebek B, Bu Y, Wang D. Long-term exposure to polystyrene nanoparticles causes transgenerational toxicity by affecting the function and expression of MEV-1 and DAF-2 signals in Caenorhabditis elegans. NANOIMPACT 2022; 26:100403. [PMID: 35560288 DOI: 10.1016/j.impact.2022.100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 05/21/2023]
Abstract
In this study, we determined the roles of oxidative stress and related signals in mediating transgenerational toxicity of 30 nm polystyrene nanoparticles (PS-NPs) in Caenorhabditis elegans. Using brood size and locomotion behavior as endpoints, exposure to 1-100 μg/L PS-NPs caused transgenerational toxicity. Meanwhile, the activation of reactive oxygen species (ROS) was also observed transgenerationally after exposure to 1-100 μg/L PS-NPs. After exposure to 1 μg/L PS-NPs, the transgenerational toxicity was monitored until F2 generation (F2-G) and recovered at F3-G. At the F1-G of 1 μg/L PS-NPs-exposed nematodes, RNAi knockdown of daf-2 with function to inhibit oxidative stress suppressed the transgenerational toxicity and increased the mitochondrial SOD-3 expression. In contrast, at F3-G of 1 μg/L PS-NPs-exposed nematodes, RNAi knockdown of mev-1 with function to induce oxidative stress promoted locomotion and brood size, and suppressed the SOD-3 expression. Moreover, we observed the dynamic expressions of mev-1, daf-2, and sod-2 transgenerationally after exposure to 1 μg/L PS-NPs at P0-G, which further suggested the involvement of MEV-1, DAF-2, and SOD-3 in affecting induction of transgenerational PS-NP toxicity. Therefore, we provided the evidence to suggest the roles of oxidative stress activation and related molecular signals in mediating induction of transgenerational PS-NP toxicity. Our data highlights the crucial function of oxidative stress-related signals during induction of transgenerational PS-NP toxicity.
Collapse
Affiliation(s)
- Le Zhang
- Medical School, Southeast University, Nanjing 210009, China
| | - Shuting Wang
- Medical School, Southeast University, Nanjing 210009, China
| | - Yunli Zhao
- Medical School, Southeast University, Nanjing 210009, China
| | | | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
11
|
Yang Y, Wu Q, Wang D. Neuronal Gα subunits required for the control of response to polystyrene nanoparticles in the range of μg/L in C. elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112732. [PMID: 34478982 DOI: 10.1016/j.ecoenv.2021.112732] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/21/2023]
Abstract
The aim of this study was to identify Gα proteins mediating function of neuronal G protein-coupled receptors (GPCRs) in controlling the response to polystyrene nanoparticles (PS-NPs). Caenorhabditis elegans was used as an animal model, and both gene expression and functional analysis were performed to identify the Gα proteins in controlling PS-NPs toxicity. In nematodes, exposure to PS-NPs (1-100 μg/L) significantly altered transcriptional expressions of some neuronal Gα genes, including gpa-5, gpa-10, gpa-11, gpa-15 gsa-1, egl-30, and goa-1. Among these 7 Gα genes, only neuronal RNAi knockdown of gsa-1, gpa-10, and goa-1 affected toxicity of PS-NPs in inducing ROS production and in decreasing locomotion behavior. Some neuronal GPCRs (such as GTR-1, DCAR-1, DOP-2, NPR-8, NPR-12, NPR-9, and DAF-37) functioned upstream of GOA-1, some neuronal GPCRs (such as DCAR-1, DOP-2, NPR-9, NPR-8, and DAF-37) functioned upstream of GSA-1, and some neuronal GPCRs (such as DOP-2, NPR-8, DAF-37, and DCAR-1) functioned upstream of GPA-10 to regulate the toxicity of PS-NPs. Moreover, GOA-1 acted upstream of MPK-1/ERK MAPK, JNK-1/JNK MAPK, DBL-1/TGF-β, and DAF-7/ TGF-β, GSA-1 functioned upstream of MPK-1/ERK MAPK, JNK-1/JNK MAPK, and DBL-1/TGF-β, and GPA-10 functioned upstream of GLB-1/Globin and DBL-1/TGF-β to control the PS-NPs toxicity. Therefore, neuronal Gα proteins of GOA-1, GSA-1, and GPA-10 functioned to transduce signals of multiple GPCRs to different downstream signaling pathways during the control of PS-NPs toxicity in nematodes. Our results provide clues for understanding the important function of GPCRs-Gα signaling cascade in the neurons in controlling response to nanoplastics in organisms.
Collapse
Affiliation(s)
- Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China.
| |
Collapse
|
12
|
Liu H, Tian L, Wang S, Wang D. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148217. [PMID: 34111783 DOI: 10.1016/j.scitotenv.2021.148217] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 05/21/2023]
Abstract
Nanoplastic exposure can potentially cause the severe transgenerational toxicity in organisms. However, the transgenerational nanoplastic toxicity and the underlying mechanisms are still largely unclear. Using Caenorhabditis elegans as an animal model, we here compared the transgenerational toxicity of two sizes of polystyrene nanoparticles (PS-NPs, 20 and 100 nm). The nematodes were exposed to PS-NPs at the P0 generation, and from the F1 generation the nematodes were grown under the normal condition. Exposure to 20 nm PS-NPs resulted in more severe transgenerational toxicity than exposure to 100 nm PS-NPs. At the concentration of 100 μg/L, the toxicity of 20 nm PS-NPs on locomotion and reproduction was detected at the F1-F6 generations, whereas the toxicity of 100 nm PS-NPs could only be observed at the F1-F3 generations. The difference in transgeneration toxicity between PS-NPs (20 nm) and PS-NPs (100 nm) was associated with the difference in transgenerational activation of oxidative stress. Based on observations on SOD-3::GFP, HSP-6::GFP, and HSP-4::GFP expressions, PS-NPs (20 nm) and PS-NPs (100 nm) further induced different transgenerational responses of anti-oxidation, mt UPR, and ER UPR. Our data suggested that the induction of transgenerational toxicity of PS-NPs was size dependent in nematodes. The results are helpful for our understanding the cellular mechanisms for the induction of transgenerational nanoplastic toxicity in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lijie Tian
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Shuting Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
13
|
Deng Y, Du H, Tang M, Wang Q, Huang Q, He Y, Cheng F, Zhao F, Wang D, Xiao G. Biosafety assessment of Acinetobacter strains isolated from the Three Gorges Reservoir region in nematode Caenorhabditis elegans. Sci Rep 2021; 11:19721. [PMID: 34611259 PMCID: PMC8492797 DOI: 10.1038/s41598-021-99274-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter has been frequently detected in backwater areas of the Three Gorges Reservoir (TGR) region. We here employed Caenorhabditis elegans to perform biosafety assessment of Acinetobacter strains isolated from backwater area in the TGR region. Among 21 isolates and 5 reference strains of Acinetobacter, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii ATCC 19606T, A. junii NH88-14, and A. lwoffii DSM 2403T resulted in significant decrease in locomotion behavior and reduction in lifespan of Caenorhabditis elegans. In nematodes, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii, A. junii and A. lwoffii also resulted in significant reactive oxygen species (ROS) production. Moreover, exposure to Acinetobacter isolates of AC1, AC15, AC18, and AC21 led to significant increase in expressions of both SOD-3::GFP and some antimicrobial genes (lys-1, spp-12, lys-7, dod-6, spp-1, dod-22, lys-8, and/or F55G11.4) in nematodes. The Acinetobacter isolates of AC1, AC15, AC18, and AC21 had different morphological, biochemical, phylogenetical, and virulence gene properties. Our results suggested that exposure risk of some Acinetobacter strains isolated from the TGR region exists for environmental organisms and human health. In addition, C. elegans is useful to assess biosafety of Acinetobacter isolates from the environment.
Collapse
Affiliation(s)
- Yunjia Deng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Mingfeng Tang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qilong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Ying He
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Fei Cheng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Dayong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
| |
Collapse
|
14
|
Yang Y, Dong W, Wu Q, Wang D. Induction of Protective Response Associated with Expressional Alterations in Neuronal G Protein-Coupled Receptors in Polystyrene Nanoparticle Exposed Caenorhabditis elegans. Chem Res Toxicol 2021; 34:1308-1318. [PMID: 33650869 DOI: 10.1021/acs.chemrestox.0c00501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, the association of expressional alterations in neuronal G protein-coupled receptors (GPCRs) with induction of protective response to polystyrene nanoparticles (PS-NPs) was investigated in Caenorhabditis elegans. On the basis of both phenotypic analysis and expression levels, the alterations in expressions of NPR-1, NPR-4, NPR-8, NPR-9, NPR-12, DCAR-1, GTR-1, DOP-2, SER-4, and DAF-37 in neuronal cells mediated the protective response to PS-NPs exposure. In neuronal cells, NPR-9, NPR-12, DCAR-1, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting JNK-1/JNK MAPK signaling. Neuronal NPR-8, NPR-9, DCAR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting MPK-1/ERK MAPK signaling. Neuronal NPR-4, NPR-8, NPR-9, NPR-12, GTR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting DBL-1/TGF-β signaling. Neuronal NPR-1, NPR-4, NPR-12, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting DAF-7/TGF-β signaling. Our data provides an important neuronal basis for induction of protective response to PS-NPs in C. elegans.
Collapse
Affiliation(s)
- Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Wenting Dong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.,College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China
| |
Collapse
|