1
|
Akyildiz A, Ilgaz Aysan I, Abdullahi YZ, Akgenc Hanedar B, Demir Vatansever Z, Ersan F. Investigation of the electronic and magnetic properties of bare and oxygen-terminated ordered double transition-metal MXenes for spintronic applications. Phys Chem Chem Phys 2024; 26:26566-26575. [PMID: 39400247 DOI: 10.1039/d4cp03396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
MXenes are a large and new family of intrinsically magnetic two-dimensional (2D) transition-metal carbides and nitrides. This family has been adding new members since their first discovery in 2011, and has expanded with the exploring of ordered double transition-metal (DTM) MXenes. In this study, we have investigated the electronic and magnetic properties of thirteen bare and fourteen oxygen-terminated DTM MXene structures (M3C2, M3C2O2, MM'C2 and MM'C2O2, M = Ti, Zr, Cr, and Mo; M' = Ti, V, Nb, and Ta). The Hubbard-U parameter strongly depends on the atom environment and the coordination number in the cell. Therefore, for the first time in the literature, we have calculated the Hubbard-U parameters for each considered MXene structure systematically instead of taking them randomly. The investigated MXene structures have striking properties with respect to their magnetic ground states, and show ferromagnetic to antiferromagnetic or non-magnetic properties, accompanied by semiconductor to metallic or semi-metallic properties, depending on the transition metal(s) or termination by oxygen. We have performed Monte Carlo simulations to obtain the magnetic phase transition temperature of each structure. Additionally, coercivity and remanence values have been calculated for ferromagnetic cases, and we have investigated the hysteresis features of the MXenes of interest by applying a cyclic magnetic field at several temperatures.
Collapse
Affiliation(s)
- Aymila Akyildiz
- Department of Physics, Dokuz Eylul University, Izmir 35160, Turkey.
| | - Isil Ilgaz Aysan
- Department of Physics, Aydin Adnan Menderes University, Aydin 09010, Turkey.
| | - Yusuf Zuntu Abdullahi
- Department of Physics, Aydin Adnan Menderes University, Aydin 09010, Turkey.
- Department of Physics, Faculty of Science, Kaduna State University, P.M.B. 2339 Kaduna State, Nigeria
| | | | | | - Fatih Ersan
- Department of Physics, Aydin Adnan Menderes University, Aydin 09010, Turkey.
| |
Collapse
|
2
|
Rems E, Hu YJ, Gogotsi Y, Dominko R. Pivotal Role of Surface Terminations in MXene Thermodynamic Stability. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:10295-10306. [PMID: 39464292 PMCID: PMC11500292 DOI: 10.1021/acs.chemmater.4c02274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
MXenes, i.e., two-dimensional transition metal carbides and nitrides, have been reported as promising materials for various applications, including energy storage, biomedicine, and electronics. The family of MXenes has proliferated, and the chemical space of synthesized MXenes has expanded to 13 transition metals and a dozen elements in surface terminations. The diverse chemistry of MXenes enables systematical tuning of MXene properties to meet the needs of target applications. However, synthesizing new MXene compositions largely relies on a trial-and-error approach. To overcome it, computational predictions of MXene compositions that are thermodynamically stable are crucial to rationalize experimental efforts. Here, we report a comprehensive computational screening for thermodynamically stable MXenes across 29 transition metals and 11 surface terminations. Density functional theory calculations are employed to compute the energy above the convex energy hull as a descriptor of thermodynamic stability. The results are analyzed to explore factors crucial for determining the thermodynamic stability of MXenes, by which the chemistry of surface terminations is found to play a crucial role. The insights on the chemistry of 998 MXene compositions predicted to be (meta)stable are given to systematically guide further research on MXene synthesis and application.
Collapse
Affiliation(s)
- Ervin Rems
- National
Institute of Chemistry, Ljubljana 1001, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Ljubljana 1000, Slovenia
| | - Yong-Jie Hu
- Department
of Materials Science and Engineering, Drexel
University, Philadelphia, Pennsylvania 19104, United States
| | - Yury Gogotsi
- Department
of Materials Science and Engineering, Drexel
University, Philadelphia, Pennsylvania 19104, United States
- A.J.
Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Robert Dominko
- National
Institute of Chemistry, Ljubljana 1001, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Ljubljana 1000, Slovenia
- ALISTORE
- European Research Institute, CNRS FR 3104, Amiens, Cedex 80039, France
| |
Collapse
|
3
|
Pang X, Lee H, Rong J, Zhu Q, Xu S. Self-Thermal Management in Filtered Selenium-Terminated MXene Films for Flexible Safe Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309580. [PMID: 38705865 DOI: 10.1002/smll.202309580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Indexed: 05/07/2024]
Abstract
Li-ion batteries with superior interior thermal management are crucial to prevent thermal runaway and ensure safe, long-lasting operation at high temperatures or during rapid discharging and charging. Typically, such thermal management is achieved by focusing on the separator and electrolyte. Here, the study introduces a Se-terminated MXene free-standing electrode with exceptional electrical conductivity and low infrared emissivity, synergistically combining high-rate capacity with reduced heat radiation for safe, large, and fast Li+ storage. This is achieved through a one-step organic Lewis acid-assisted gas-phase reaction and vacuum filtration. The Se-terminated Nb2Se2C outperformed conventional disordered O/OH/F-terminated materials, enhancing Li+-storage capacity by ≈1.5 times in the fifth cycle (221 mAh·g-1 at 1 A·g-1) and improving mid-infrared adsorption with low thermal radiation. These benefits result from its superior electrical conductivity, excellent structural stability, and high permittivity in the infrared region. Calculations further reveal that increased permittivity and conductivity along the z-direction can reduce heat radiation from electrodes. This work highlights the potential of surface groups-terminated layered material-based free-standing flexible electrodes with self-thermal management ability for safe, fast energy storage.
Collapse
Affiliation(s)
- Xin Pang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hyunjin Lee
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Jingzhi Rong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiaoyu Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shumao Xu
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
4
|
Khan K, Tareen AK, Ahmad W, Hussain I, Chaudhry MU, Mahmood A, Khan MF, Zhang H, Xie Z. Recent Advances in Non-Ti MXenes: Synthesis, Properties, and Novel Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303998. [PMID: 38894594 PMCID: PMC11423233 DOI: 10.1002/advs.202303998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Indexed: 06/21/2024]
Abstract
One of the most fascinating 2D nanomaterials (NMs) ever found is various members of MXene family. Among them, the titanium-based MXenes, with more than 70% of publication-related investigations, are comparatively well studied, producing fundamental foundation for the 2D MXene family members with flexible properties, familiar with a variety of advanced novel technological applications. Nonetheless, there are still more candidates among transitional metals (TMs) that can function as MXene NMs in ways that go well beyond those that are now recognized. Systematized details of the preparations, characteristics, limitations, significant discoveries, and uses of the novel M-based MXenes (M-MXenes), where M stands for non-Ti TMs (M = Sc, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, and Lu), are given. The exceptional qualities of the 2D non-Ti MXene outperform standard Ti-MXene in several applications. There is many advancement in top-down as well as bottom-up production of MXenes family members, which allows for exact control of the M-characteristics MXene NMs to contain cutting-edge applications. This study offers a systematic evaluation of existing research, covering everything in producing complex M-MXenes from primary limitations to the characterization and selection of their applications in accordance with their novel features. The development of double metal combinations, extension of additional metal candidates beyond group-(III-VI)B family, and subsequent development of the 2D TM carbide/TMs nitride/TM carbonitrides to 2D metal boride family are also included in this overview. The possibilities and further recommendations for the way of non-Ti MXene NMs are in the synthesis of NMs will discuss in detail in this critical evaluation.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
- Shenzhen Nuoan Environmental and Safety Inc., Shenzhen, 518107, China
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Waqas Ahmad
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mujeeb U Chaudhry
- Department of Engineering, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE, UK
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, 518038, P. R. China
| |
Collapse
|
5
|
Alam MS, Chowdhury MA, Khandaker T, Hossain MS, Islam MS, Islam MM, Hasan MK. Advancements in MAX phase materials: structure, properties, and novel applications. RSC Adv 2024; 14:26995-27041. [PMID: 39193282 PMCID: PMC11348849 DOI: 10.1039/d4ra03714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The MAX phase represents a diverse class of nanolaminate materials with intriguing properties that have received incredible global research attention because they bridge the divide separating metals and ceramics. Despite the numerous potential applications of MAX phases, their complex structure leads to a scarcity of readily accessible pure MAX phases. As a result, in-depth research on synthesis methods, characteristics, and structure is frequently needed for appropriate application. This review provides a comprehensive understanding of the recent advancements and growth in MAX phases, focusing on their complex crystal structures, unique mechanical, thermal, electrical, crack healing, corrosion-resistant properties, as well as their synthesis methods and applications. The structure of MAX phases including single metal MAX, i-MAX and o-MAX was discussed. Moreover, recent advancements in understanding MAX phase behaviour under extreme conditions and their potential novel applications across various fields, including high-temperature coatings, energy storage, and electrical and thermal conductors, biomedical, nanocomposites, etc. were discussed. Moreover, the synthesis techniques, ranging from bottom-up to top-down methods are scrutinized for their efficacy in tailoring MAX phase properties. Furthermore, the review explores the challenges and opportunities associated with optimizing MAX phase materials for specific applications, such as enhancing their oxidation resistance, tuning their mechanical properties, and exploring their functionality in emerging technologies. Overall, this review aims to provide researchers and engineers with a comprehensive understanding of MAX phase materials and inspire further exploration into their versatile applications in materials science and engineering.
Collapse
Affiliation(s)
- Md Shahinoor Alam
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology Gazipur-1707 Dhaka Bangladesh
| | | | - Tasmina Khandaker
- Department of Chemistry, Bangladesh Army University of Engineering and Technology Qadirabad Cantonment Natore-6431 Bangladesh
| | | | - Md Saiful Islam
- Department of Chemistry, Bangladesh Army University of Engineering and Technology Qadirabad Cantonment Natore-6431 Bangladesh
| | - Md Moynul Islam
- Department of Chemistry, Bangladesh Army University of Engineering and Technology Qadirabad Cantonment Natore-6431 Bangladesh
| | - Md Kamrul Hasan
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| |
Collapse
|
6
|
Michałowski PP. Unraveling the composition of each atomic layer in the MXene/MAX phase structure - identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of MXenes. NANOSCALE HORIZONS 2024; 9:1493-1497. [PMID: 39072410 DOI: 10.1039/d4nh00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
MXenes, the largest known family of 2D materials, are known for their complicated structure consisting of many different elements. Their properties can be finely tuned by precise engineering of the composition of each atomic layer. Thus it is necessary to further develop the secondary ion mass spectrometry (SIMS) technique which can unambiguously identify each element with atomic precision. The newly established protocol of deconvolution and calibration of the SIMS data enables layer-by-layer characterization of MAX phase and MXene samples with ±1% accuracy. Such precision is particularly important for samples that consist of several different transition metals in their structure. This confirms that most MXenes contain a substantial amount of oxygen in the X layers, thus enabling the identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of these materials. It can also be applied for under- and over-etched samples and to determine the exact composition of termination layers. Generally, the SIMS technique may provide invaluable support in the synthesis and optimization of MAX phase and MXene studies.
Collapse
|
7
|
Vénosová B, Karlický F. MXene's surface functionalization patterns and their impacts on magnetism. Phys Chem Chem Phys 2024; 26:18500-18509. [PMID: 38916526 DOI: 10.1039/d4cp01319k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Two-dimensional transition metal carbides and nitrides (MXenes) are a promising group of materials with a broad palette of applications. Surface terminations are a result of MXene preparation, and post-processing can also lead to partial coverage. Despite applicability and fundamental properties being driven by termination patterns, it is not fully clear how they behave on MXene surfaces with various degrees of surface coverage. Here, as the first step, we used density functional theory to predict possible patterns in prototypic Ti2C MXene, demonstrating the different behavior of the two most frequent terminal atoms, oxygen, and fluorine. Oxygen (with formal charge -2e) prefers a zigzag line both-side adsorption pattern on bare Ti2C, attracting the next adsorbent at a minimal distance. Oxygen defects in fully O-terminated MXene tend to form similar zigzag line vacancy patterns. On the other hand, fluorine (with a formal charge of -1e) prefers one-side flake (island) adsorption on bare Ti2C and a similar desorption style from fully fluorinated Ti2C. The magnetic behavior of the MXene is subsequently driven by the patterns, either compensating locally and holding the global magnetic state of the MXene until some limit (oxygen case) or gradually increasing the total magnetism through summation of local effects (fluorine case). The systematic combinatoric study of Ti2CTx with various coverages (0 ≤ x ≤ 2) of distinct terminal atoms T = O or F brings encouraging possibilities of tunable behavior of MXenes and provides useful guidance for its modeling towards electronic nanodevices.
Collapse
Affiliation(s)
- Barbora Vénosová
- Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, 7013 Ostrava, Czech Republic.
| | - František Karlický
- Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, 7013 Ostrava, Czech Republic.
| |
Collapse
|
8
|
Zhang H, Wang G, Beshiwork BA, Teketel BS, Li B, Lin B. Janus MXene nanosheets with a strain-induced reversible magnetic state transition for storing information without electricity. Chem Commun (Camb) 2024; 60:4577-4580. [PMID: 38573313 DOI: 10.1039/d4cc00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The application of strain induces a transition in the ground-state magnetic configuration of Janus TiVC MXene from A-AFM to FM. A new system and method of solid-state disk information storage without electricity is developed based on the as-discovered reversible magnetic state transition in TiVC, which can achieve efficient storage of information in extremely harsh conditions.
Collapse
Affiliation(s)
- Hengyue Zhang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Guoqing Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
- The 5th Electronics Research Institute, Ministry of Industry and Information Technology, Guangzhou 511370, China
| | - Bayu Admasu Beshiwork
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Birkneh Sirak Teketel
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Baihai Li
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
9
|
Yang J, Shi F, Zhao H, Chen L. Changing the spin disorder of two-dimensional magnetic Cr 2TiC 2T x to long-range order through noble metal adhesion. iScience 2024; 27:109227. [PMID: 38433897 PMCID: PMC10904981 DOI: 10.1016/j.isci.2024.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
To enhance the use of Cr2TiC2Tx MXene in spin electronics, it is essential to transform its spin-disordered state into a long-range ordered spin state. In this study, first-principles calculations show that Rh layers adhered to the Cr2TiC2Tx surfaces can transform its spin disordered state into a long-range spin order by donating electrons to the O terminations, resulting in Cr2TiC2Tx becoming a single-layer A-type antiferromagnet. As the proportion of F termination increases from 0 to 100%, the exchange coupling constant J1 of the compound escalates from 0.5 to 15.9 meV. Concurrently, the Néel temperature experiences a significant rise from 8 K to 110 K. The analysis of the density of states reveals that the obtained Cr2TiC2Tx exhibits excellent conductivity with O termination and semiconductor characteristics with F termination. These unique features make Cr2TiC2Tx a promising magnetic material for application in spin electronics.
Collapse
Affiliation(s)
- Jianhui Yang
- Quzhou University, Quzhou 324000, P.R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
| | - Fei Shi
- Quzhou University, Quzhou 324000, P.R. China
| | | | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
| |
Collapse
|
10
|
Yang Y, Anayee M, Pattammattel A, Shekhirev M, Wang RJ, Huang X, Chu YS, Gogotsi Y, May SJ. Enhanced magnetic susceptibility in Ti 3C 2T x MXene with Co and Ni incorporation. NANOSCALE 2024. [PMID: 38412012 DOI: 10.1039/d3nr05685f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Magnetic nanomaterials are sought to provide new functionalities for applications ranging from information processing and storage to energy generation and biomedical imaging. MXenes are a rapidly growing family of two-dimensional transition metal carbides and nitrides with versatile chemical and structural diversity, resulting in a variety of interesting electronic and optical properties. However, strategies for producing MXenes with tailored magnetic responses remain underdeveloped and challenging. Herein, we incorporate elemental Ni and Co into Ti3C2Tx MXene by mixing with dilute metal chloride solutions. We achieve a uniform distribution of Ni and Co, confirmed by X-ray fluorescence (XRF) mapping with nanometer resolution, with Ni and Co concentrations of approximately 2 and 7 at% relative to the Ti concentration. The magnetic susceptibility of these Ni- and Co-incorporated Ti3C2Tx MXenes is one to two orders of magnitude larger than pristine Ti3C2Tx, illustrating the potential for dilute metal incorporation to enhance linear magnetic responses at room temperature.
Collapse
Affiliation(s)
- Yizhou Yang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
| | - Mark Anayee
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Ajith Pattammattel
- Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, New York, 11973, USA
| | - Mikhail Shekhirev
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Ruocun John Wang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Xiaojing Huang
- Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, New York, 11973, USA
| | - Yong S Chu
- Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, New York, 11973, USA
| | - Yury Gogotsi
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Steven J May
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
| |
Collapse
|
11
|
García-Romeral N, Morales-García Á, Viñes F, de P R Moreira I, Illas F. The nature of the electronic ground state of M 2C (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) MXenes. Phys Chem Chem Phys 2023; 25:31153-31164. [PMID: 37953662 DOI: 10.1039/d3cp04402e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A systematic computational study is presented aimed at accurately describing the electronic ground state nature and properties of M2C (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) MXenes. Electronic band structure calculations in the framework of density functional theory (DFT), carried out with different types of basis sets and employing the generalized gradient approach (GGA) and hybrid functionals, provide strong evidence that Ti2C, Zr2C, Hf2C, and Cr2C MXenes exhibit an open-shell conducting ground state with localized spins on the metal atoms, while V2C, Nb2C, Mo2C, Ta2C, and W2C MXenes exhibit a diamagnetic conducting ground state. For Ti2C, Zr2C, Hf2C, and Cr2C, the analysis of the low-lying spin polarized solutions with different spin orderings indicates that their ground states are antiferromagnetic (AFM), consisting of two ferromagnetic (FM) metal layers coupled antiferromagnetically. For the diamagnetic MXenes, the converged spin polarized solutions are significantly less stable than the closed shell solution except for the case of V2C and Mo2C where those excited open shell solutions can be thermally accessible (less than 300 meV per formula unit). The analysis of charge and spin density distributions of the ground state of the MXenes reveals that, in all cases, the metal atoms have a net charge close to +1 e and C atoms close to -2 e. In the case of diamagnetic MXenes, the electronic structure of V2C, Nb2C, and Ta2C is consistent with metal atoms exhibiting a closed-shell s2d2 configuration whereas for Mo2C, and W2C is consistent with a low-spin s1d4 configuration although the FM solution is close in energy for V2C and Mo2C suggesting that they may play a role in their chemistry at high temperature. For the open shell MXenes, the spin density primarily located at the metal atoms showing one unpaired electron per Ti+, Zr+, and Hf+ magnetic center, consistent with s2d1 configuration of the metal atom, and of ∼3.5 unpaired electrons per Cr+ magnetic center interpreted as a mixture of s2d3 and high-spin s1d4 configuration. Finally, the analysis of the density of states reveals the metallic character of all these bare MXenes, irrespective of the nature of the ground state, with significant covalent contributions for Mo2C and W2C.
Collapse
Affiliation(s)
- Néstor García-Romeral
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Ibério de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
12
|
Uddin MM, Kabir MH, Ali MA, Hossain MM, Khandaker MU, Mandal S, Arifutzzaman A, Jana D. Graphene-like emerging 2D materials: recent progress, challenges and future outlook. RSC Adv 2023; 13:33336-33375. [PMID: 37964903 PMCID: PMC10641765 DOI: 10.1039/d3ra04456d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Owing to the unique physical and chemical properties of 2D materials and the great success of graphene in various applications, the scientific community has been influenced to explore a new class of graphene-like 2D materials for next-generation technological applications. Consequently, many alternative layered and non-layered 2D materials, including h-BN, TMDs, and MXenes, have been synthesized recently for applications related to the 4th industrial revolution. In this review, recent progress in state-of-the-art research on 2D materials, including their synthesis routes, characterization and application-oriented properties, has been highlighted. The evolving applications of 2D materials in the areas of electronics, optoelectronics, spintronic devices, sensors, high-performance and transparent electrodes, energy conversion and storage, electromagnetic interference shielding, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nanocomposites are discussed. In particular, the state-of-the-art applications, challenges, and outlook of every class of 2D material are also presented as concluding remarks to guide this fast-progressing class of 2D materials beyond graphene for scientific research into next-generation materials.
Collapse
Affiliation(s)
- Md Mohi Uddin
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Mohammad Humaun Kabir
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Md Ashraf Ali
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Md Mukter Hossain
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Mayeen Uddin Khandaker
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City, Birulia, Savar Dhaka 1216 Bangladesh
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
| | - Sumit Mandal
- Vidyasagar College 39, Sankar Ghosh Lane Kolkata 700006 West Bengal India
| | - A Arifutzzaman
- Tyndall National Institute, University College Cork Lee Maltings Cork T12 R5CP Ireland
| | - Debnarayan Jana
- Department of Physics, University of Calcutta 92 A P C Road Kolkata 700009 West Bengal India
| |
Collapse
|
13
|
Eom W, Shin H, Jeong W, Ambade RB, Lee H, Han TH. Surface nitrided MXene sheets with outstanding electroconductivity and oxidation stability. MATERIALS HORIZONS 2023; 10:4892-4902. [PMID: 37712182 DOI: 10.1039/d3mh01180a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Two-dimensional Ti3C2Tx MXenes are promising candidates for a wide range of film- or fiber-based devices owing to their solution processability, high electrical conductivity, and versatile surface chemistry. The surface terminal groups (Tx) of MXenes can be removed to increase their inherent electrical performance and ensure chemical stability. Therefore, understanding the chemical evolution during the removal of the terminal groups is crucial for guiding the production, processing, and application of MXenes. Herein, we investigate the effect of chemical modification on the electron-transfer behavior during the removal of the terminal groups by annealing Ti3C2Tx MXene single sheets under argon (Ar-MXene) and ammonia gas (NH3-MXene) conditions. Annealing in ammonia gas results in surface nitridation of MXenes and preserves the electron-abundant Ti3C2 structure, whereas annealing MXene single sheets in Ar gas results in the oxidation of the titanium layers. The surface-nitrided MXene film exhibits an electrical conductivity two times higher than that of the Ar-MXene film. The oxidation stability is quantified by calculating the oxidation rate constants for severe reactions with H2O2. The surface-nitrided MXene is 13 times more stable than Ar-MXene. The investigation of MXene single sheets provides fundamental insights that are valuable for designing electrically conductive and chemically stable MXenes.
Collapse
Affiliation(s)
- Wonsik Eom
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Hwansoo Shin
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea.
| | - Woojae Jeong
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea.
| | - Rohan B Ambade
- Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
- Aerospace Research and Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hyeonhoo Lee
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea.
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea.
- Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
14
|
Bagheri S, Lipatov A, Vorobeva NS, Sinitskii A. Interlayer Incorporation of A-Elements into MXenes Via Selective Etching of A' from M n+1A' 1-xA″ xC n MAX Phases. ACS NANO 2023; 17:18747-18757. [PMID: 37748108 DOI: 10.1021/acsnano.3c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
MXenes are a large family of two-dimensional materials with a general formula Mn+1XnTz, where M is a transition metal, X = C and/or N, and Tz represents surface functional groups. MXenes are synthesized by etching A-elements from layered MAX phases with a composition of Mn+1AXn. As over 20 different chemical elements were shown to form A-layers in various MAX phases, we propose that they can provide an abundant source of very diverse MXene-based materials. The general strategy for A-modified MXenes relies on the synthesis of Mn+1A'1-xA″xXn MAX phase, in which the higher reactivity of the A'-element compared to that of A″ enables its selective etching, resulting in A″-modified Mn+1XnTz. In general, the A″-element could modify the interlayer spaces of MXene flakes in a form of metallic or oxide species, depending on its chemical identity and synthetic conditions. We demonstrate this strategy by synthesizing Sn-modified Ti3C2Tz MXene from the Ti3Al0.75Sn0.25C2 MAX phase, which was used as a model system. Although the incorporation of Sn in the A-layer of Ti3AlC2 decreases the MAX phase reactivity, we developed an etching procedure to completely remove Al and produce Sn-modified Ti3C2Tz MXene. The resulting MXene sheets were of very high quality and exhibited improved environmental stability, which we attribute to the effect of a uniform Sn modification. Finally, we demonstrate a peculiar electrostatic expansion of Sn-modified Ti3C2Tz accordions, which may find interesting applications in MXene-based nano-electromechanical systems. Overall, these results demonstrate that in addition to different combinations of M and X elements in MAX phases, an A-layer also provides opportunities for the synthesis of MXene-based materials.
Collapse
Affiliation(s)
- Saman Bagheri
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexey Lipatov
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
| | - Nataliia S Vorobeva
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
15
|
Kubitza N, Büchner C, Sinclair J, Snyder RM, Birkel CS. Extending the Chemistry of Layered Solids and Nanosheets: Chemistry and Structure of MAX Phases, MAB Phases and MXenes. Chempluschem 2023; 88:e202300214. [PMID: 37500596 DOI: 10.1002/cplu.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
MAX phases are layered solids with unique properties combining characteristics of ceramics and metals. MXenes are their two-dimensional siblings that can be synthesized as van der Waals-stacked and multi-/single-layer nanosheets, which possess chemical and physical properties that make them interesting for a plethora of applications. Both families of materials are highly versatile in terms of their chemical composition and theoretical studies suggest that many more members are stable and can be synthesized. This is very intriguing because new combinations of elements, and potentially new structures, can lead to further (tunable) properties. In this review, we focus on the synthesis science (including non-conventional approaches) and structure of members less investigated, namely compounds with more exotic M-, A-, and X-elements, for example nitrides and (carbo)nitrides, and the related family of MAB phases.
Collapse
Affiliation(s)
- Niels Kubitza
- Department of Chemistry and Biochemistry, Technische Universitaet Darmstadt, 64287, Darmstadt, Germany
| | - Carina Büchner
- Department of Chemistry and Biochemistry, Technische Universitaet Darmstadt, 64287, Darmstadt, Germany
| | - Jordan Sinclair
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Rose M Snyder
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Christina S Birkel
- Department of Chemistry and Biochemistry, Technische Universitaet Darmstadt, 64287, Darmstadt, Germany
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
16
|
Lin YC, Torsi R, Younas R, Hinkle CL, Rigosi AF, Hill HM, Zhang K, Huang S, Shuck CE, Chen C, Lin YH, Maldonado-Lopez D, Mendoza-Cortes JL, Ferrier J, Kar S, Nayir N, Rajabpour S, van Duin ACT, Liu X, Jariwala D, Jiang J, Shi J, Mortelmans W, Jaramillo R, Lopes JMJ, Engel-Herbert R, Trofe A, Ignatova T, Lee SH, Mao Z, Damian L, Wang Y, Steves MA, Knappenberger KL, Wang Z, Law S, Bepete G, Zhou D, Lin JX, Scheurer MS, Li J, Wang P, Yu G, Wu S, Akinwande D, Redwing JM, Terrones M, Robinson JA. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS NANO 2023; 17:9694-9747. [PMID: 37219929 PMCID: PMC10324635 DOI: 10.1021/acsnano.2c12759] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Riccardo Torsi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rehan Younas
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christopher L Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Albert F Rigosi
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Heather M Hill
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kunyan Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chen Chen
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Hsiu Lin
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel Maldonado-Lopez
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jose L Mendoza-Cortes
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - John Ferrier
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Swastik Kar
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nadire Nayir
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmet University, Karaman 70100, Turkey
| | - Siavash Rajabpour
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiwen Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jie Jiang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wouter Mortelmans
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Rafael Jaramillo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Joao Marcelo J Lopes
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Roman Engel-Herbert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Anthony Trofe
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Tetyana Ignatova
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Seng Huat Lee
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhiqiang Mao
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leticia Damian
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Yuanxi Wang
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Megan A Steves
- Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhengtianye Wang
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Stephanie Law
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - George Bepete
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiang-Xiazi Lin
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Mathias S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Jia Li
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Pengjie Wang
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Guo Yu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Sanfeng Wu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas, Austin, Texas 78758, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Research Initiative for Supra-Materials and Global Aqua Innovation Center, Shinshu University, Nagano 380-8553, Japan
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Khan K, Tareen AK, Iqbal M, Ye Z, Xie Z, Mahmood A, Mahmood N, Zhang H. Recent Progress in Emerging Novel MXenes Based Materials and their Fascinating Sensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206147. [PMID: 36755364 DOI: 10.1002/smll.202206147] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Indexed: 05/11/2023]
Abstract
Early transition metals based 2D carbides, nitrides and carbonitrides nanomaterials are known as MXenes, a novel and extensive new class of 2D materials family. Since the first accidently synthesis based discovery of Ti3 C2 in 2011, more than 50 additional compositions have been experimentally reported, including at least eight distinct synthesis methods and also more than 100 stoichiometries are theoretically studied. Due to its distinctive surface chemistry, graphene like shape, metallic conductivity, high hydrophilicity, outstanding mechanical and thermal properties, redox capacity and affordable with mass-produced nature, this diverse MXenes are of tremendous scientific and technological significance. In this review, first we'll come across the MXene based nanomaterials possible synthesis methods, their advantages, limitations and future suggestions, new chemistry related to their selected properties and potential sensing applications, which will help us to explain why this family is growing very fast as compared to other 2D families. Secondly, problems that help to further improve commercialization of the MXene nanomaterials based sensors are examined, and many advances in the commercializing of the MXene nanomaterials based sensors are proposed. At the end, we'll go through the current challenges, limitations and future suggestions.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
- Shenzhen Nuoan Environmental & Safety Inc., Shenzhen, 518107, P. R. China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Muhammad Iqbal
- Department of BioChemistry, Quaid-i-Azam University, Islamabad, 45320, Islamic Republic of Pakistan
| | - Zhang Ye
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, 518116, China
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Nasir Mahmood
- School of Science, The Royal Melbourne Institute of Technology University, Melbourne, Victoria, VIC 3001, Australia
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
18
|
He X, Qian Y, Wu C, Feng J, Sun X, Zheng Q, Li X, Shen J. Entropy-Mediated High-Entropy MXenes Nanotherapeutics: NIR-II-Enhanced Intrinsic Oxidase Mimic Activity to Combat Methicillin-Resistant Staphylococcus Aureus Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211432. [PMID: 36941204 DOI: 10.1002/adma.202211432] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/01/2023] [Indexed: 05/16/2023]
Abstract
Bacterial infections, such as bacterial keratitis (BK) and subcutaneous abscess, pose significant challenges to global healthcare. Innovative and new antibacterial agents and antibacterial strategies are in demand to control infections in this era of high drug resistance. Nanotechnology is gradually emerging as an economically feasible and effective anti-infection treatment. High-entropy MXenes (HE MXenes) are used to confer desirable properties with exposed active sites to high-entropy atomic layers, whose potential application in the field of biomedicine remains to be explored. Herein, monolayer HE MXenes are fabricated by implementing transition metals with high entropy and low Gibbs free energy to fill the gap in the biocatalytic performance of non-high-entropy MXenes. HE MXenes are endowed with extremely strong oxidase mimic activity (Km = 0.227 mm) and photothermal conversion efficiency (65.8%) in the second near-infrared (NIR-II) biowindow as entropy increases. Subsequently, HE MXenes realize NIR-II-enhanced intrinsic oxidase mimic activity for killing methicillin-resistant Staphylococcus aureus and rapidly removing the biofilm. Furthermore, HE MXenes can effectively treat BK and subcutaneous abscess infection induced by methicillin-resistant Staphylococcus aureus as nanotherapeutic agents with minuscule side effects. Overall, monolayer HE MXenes demonstrate promising clinical application potential in the treatment of drug-resistant bacterial infections and promote the healing of infected tissues.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Chenglin Wu
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayao Feng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoshuai Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qinxiang Zheng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
19
|
García-Romeral N, Morales-García Á, Viñes F, Moreira IDR, Illas F. Theoretical Analysis of Magnetic Coupling in the Ti 2C Bare MXene. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:3706-3714. [PMID: 36865991 PMCID: PMC9969871 DOI: 10.1021/acs.jpcc.2c07609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/26/2023] [Indexed: 06/13/2023]
Abstract
The nature of the electronic ground state of the Ti2C MXene is unambiguously determined by making use of density functional theory-based calculations including hybrid functionals together with a stringent computational setup providing numerically converged results up to 1 meV. All the explored density functionals (i.e., PBE, PBE0, and HSE06) consistently predict that the Ti2C MXene has a magnetic ground state corresponding to antiferromagnetic (AFM)-coupled ferromagnetic (FM) layers. A spin model, with one unpaired electron per Ti center, consistent with the nature of the chemical bond emerging from the calculations, is presented in which the relevant magnetic coupling constants are extracted from total energy differences of the involved magnetic solutions using an appropriate mapping approach. The use of different density functionals enables us to define a realistic range for the magnitude of each of the magnetic coupling constants. The intralayer FM interaction is the dominant term, but the other two AFM interlayer couplings are noticeable and cannot be neglected. Thus, the spin model cannot be reduced to include nearest-neighbor interactions only. The Néel temperature is roughly estimated to be in the 220 ± 30 K, suggesting that this material can be used in practical applications in spintronics and related fields.
Collapse
|
20
|
Zhang S, Zhou Y, Liang X, Wang Y, Wang T, Yang J, Lv L. Tuning the Magnetic Properties of Cr 2TiC 2T x through Surface Terminations: A Theoretical Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4364. [PMID: 36558217 PMCID: PMC9781736 DOI: 10.3390/nano12244364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Recently, magnetic two-dimensional Cr2TiC2Tx MXenes with promising applications in spin electronics have been experimentally confirmed. However, the underlying magnetic mechanism needs to be further investigated. Along these lines, in this work, the magnetic properties of Cr2TiC2On/4F2-n/4 and Cr2TiC2On/4 structures were simulated through first-principle calculations using the GGA+U approach. The values of 4.1 and 3.1 eV were calculated for the Hubbard U of Cr and Ti, respectively, by applying the linear response method. Interestingly, the Cr2TiC2On/4F2-n/4-based configurations with low O content (n ≤ 4) exhibit antiferromagnetic behavior, while the majority of the respective configurations with high O content (n ≥ 5) are ferromagnetic. As far as the Cr2TiC2O5/4F3/4 structure (n = 5) is concerned, the value of about 2.64 μB was estimated for the magnetic moment of the Cr atom. On top of that, the Curie temperature lies within the range of 10~47 K. The extracted theoretical results are in good agreement with experimental outcomes of the Cr2TiC2O1.3F0.8-based structure. From the simulated results, it can be also argued that the magnetic moment of Cr atoms and the Neel temperature can be directly tuned by the active content of O atoms. The conductivity of both Cr2TiC2On/4F2-n/4 and Cr2TiC2On/4 configurations can be regulated by the externally applied magnetic field, while the density of states around the Fermi level shifted significantly between ferromagnetic and antiferromagnetic arrangements. The acquired results provide important theoretical insights to tuning the magnetic properties of Cr2TiC2Tx-based structures through surface termination mechanisms, which are quite significant for their potential applications in spin electronics.
Collapse
Affiliation(s)
- Shaozheng Zhang
- College of Teacher Education, Quzhou University, Quzhou 324000, China
| | - Yuanting Zhou
- College of Teacher Education, Quzhou University, Quzhou 324000, China
| | - Xing Liang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yulin Wang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tong Wang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Jianhui Yang
- College of Teacher Education, Quzhou University, Quzhou 324000, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liang Lv
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
21
|
Du CF, Xue Y, Zeng Q, Wang J, Zhao X, Wang Z, Wang C, Yu H, Liu W. Mo-doped Cr-Ti-Mo ternary o-MAX with ultra-low wear at elevated temperatures. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Michałowski PP, Anayee M, Mathis TS, Kozdra S, Wójcik A, Hantanasirisakul K, Jóźwik I, Piątkowska A, Możdżonek M, Malinowska A, Diduszko R, Wierzbicka E, Gogotsi Y. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. NATURE NANOTECHNOLOGY 2022; 17:1192-1197. [PMID: 36138199 DOI: 10.1038/s41565-022-01214-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The MXene family of two-dimensional transition metal carbides and nitrides already includes ~50 members with distinct numbers of atomic layers, stoichiometric compositions and solid solutions, in-plane or out-of-plane ordering of atoms, and a variety of surface terminations. MXenes have shown properties that make them attractive for applications ranging from energy storage to electronics and medicine. Although this compositional variability allows fine-tuning of the MXene properties, it also creates challenges during the analysis of MXenes because of the presence of multiple light elements (for example, H, C, N, O, and F) in close proximity. Here, we show depth profiling of single particles of MXenes and their parent MAX phases with atomic resolution using ultralow-energy secondary-ion mass spectrometry. We directly detect oxygen in the carbon sublattice, thereby demonstrating the existence of oxycarbide MXenes. We also determine the composition of adjacent surface termination layers and show their interaction with each other. Analysis of the metal sublattice shows that Mo2TiAlC2 MAX exhibits perfect out-of-plane ordering, whereas Cr2TiAlC2 MAX exhibits some intermixing between Cr and Ti in the inner transition metal layer. Our results showcase the capabilities of the developed secondary-ion mass spectrometry technique to probe the composition of layered and two-dimensional materials with monoatomic-layer precision.
Collapse
Affiliation(s)
- Paweł P Michałowski
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland.
| | - Mark Anayee
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Tyler S Mathis
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Sylwia Kozdra
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Adrianna Wójcik
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | - Kanit Hantanasirisakul
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Iwona Jóźwik
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Anna Piątkowska
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Małgorzata Możdżonek
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Agnieszka Malinowska
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Ryszard Diduszko
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Edyta Wierzbicka
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Saeed MA, Shahzad A, Rasool K, Mateen F, Oh J, Shim JW. 2D MXene: A Potential Candidate for Photovoltaic Cells? A Critical Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104743. [PMID: 35166059 PMCID: PMC8981901 DOI: 10.1002/advs.202104743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/01/2022] [Indexed: 06/14/2023]
Abstract
The 2D transition metal carbides/nitrides (2D MXenes) are a versatile class of 2D materials for photovoltaic (PV) systems. The numerous advantages of MXenes, including their excellent metallic conductivity, high optical transmittance, solution processability, tunable work-function, and hydrophilicity, make them suitable for deployment in PV technology. This comprehensive review focuses on the synthesis methodologies and properties of MXenes and MXene-based materials for PV systems. Titanium carbide MXene (Ti3 C2 Tx ), a well-known member of the MXene family, has been studied in many PV applications. Herein, the effectiveness of Ti3 C2 Tx as an additive in different types of PV cells, and the synergetic impact of Ti3 C2 Tx as an interfacial material on the photovoltaic performance of PV cells, are systematically examined. Subsequently, the utilization of Ti3 C2 Tx as a transparent conductive electrode, and its influence on the stability of the PV cells, are discussed. This review also considers problems that emerged from previous studies, and provides guidelines for the further exploration of Ti3 C2 Tx and other members of the 2D MXene family in PV technology. This timely study is expected to provide comprehensive understanding of the current status of MXenes, and to set the direction for the future development in 2D material design and processing for PVs.
Collapse
Affiliation(s)
- Muhammad Ahsan Saeed
- Division of Electronics and Electrical EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Asif Shahzad
- Department of Energy and Materials EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Kashif Rasool
- Qatar Environment and Energy Research InstituteHamad Bin Khalifa University (HBKU)Qatar Foundation34110DohaQatar
| | - Fahad Mateen
- Department of Chemical and Biochemical EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Jae‐Min Oh
- Department of Energy and Materials EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Jae Won Shim
- School of Electrical EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
24
|
Heterogeneous self-healing assembly of MXene and graphene oxide enables producing free-standing and self-reparable soft electronics and robots. Sci Bull (Beijing) 2022; 67:501-511. [DOI: 10.1016/j.scib.2021.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
|
25
|
Zhang Y, Cui Z, Sa B, Miao N, Zhou J, Sun Z. Computational design of double transition metal MXenes with intrinsic magnetic properties. NANOSCALE HORIZONS 2022; 7:276-287. [PMID: 35108718 DOI: 10.1039/d1nh00621e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional transition metal carbides (MXenes) have great potential to achieve intrinsic magnetism due to their available chemical and structural diversity. In this work, by spin-polarized density functional theory calculations, we designed and comprehensively investigated 50 double transition metal (DTM) MXenes MCr2CTx (T = H, O, F, OH, or bare) based on the chemical formula of M2C (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W). We highlight that ferromagnetic half-metallicity, antiferromagnetic semiconduction, as well as antiferromagnetic half-metallicity have been achieved in the DTM MXenes. Herein, ferromagnetic half-metallic ScCr2C2, ScCr2C2H2, ScCr2C2F2, and YCr2C2H2 are characterized with wide band gaps and high Curie temperatures. Very interestingly, the ScCr2C2-based magnetic tunnel junction presents a tunnel magnetoresistance ratio as high as 176 000%. In addition, the antiferromagnetic semiconducting TiCr2C2, ZrCr2C2, and ZrCr2C2(OH)2, possessing moderate band gaps and high Néel temperatures, have been predicted. Especially, the Néel temperature of ZrCr2C2(OH)2 can reach 425 K. Moreover, the Dirac cone-like band structure feature is highlighted in antiferromagnetic half-metallic ZrCr2C2H2. Our study provides a new potential strategy for designing MXenes in spintronics.
Collapse
Affiliation(s)
- Yinggan Zhang
- College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China
| | - Zhou Cui
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Baisheng Sa
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Naihua Miao
- School of Materials Science and Engineering and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China.
| | - Jian Zhou
- School of Materials Science and Engineering and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China.
| | - Zhimei Sun
- School of Materials Science and Engineering and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
26
|
Lee JT, Wyatt BC, Davis GA, Masterson AN, Pagan AL, Shah A, Anasori B, Sardar R. Covalent Surface Modification of Ti 3C 2T x MXene with Chemically Active Polymeric Ligands Producing Highly Conductive and Ordered Microstructure Films. ACS NANO 2021; 15:19600-19612. [PMID: 34786933 DOI: 10.1021/acsnano.1c06670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As interest continues to grow in Ti3C2Tx and other related MXenes, advancement in methods of manipulation of their surface functional groups beyond synthesis-based surface terminations (Tx: -F, -OH, and ═O) can provide mechanisms to enhance solution processability as well as produce improved solid-state device architectures and coatings. Here, we report a chemically important surface modification approach in which "solvent-like" polymers, polyethylene glycol carboxylic acid (PEG6-COOH), are covalently attached onto MXenes via esterification chemistry. Surface modification of Ti3C2Tx with PEG6-COOH with large ligand loading (up to 14% by mass) greatly enhances dispersibility in a wide range of nonpolar organic solvents (e.g., 2.88 mg/mL in chloroform) without oxidation of Ti3C2Tx two-dimensional flakes or changes in the structure ordering. Furthermore, cooperative interactions between polymer chains improve the nanoscale assembly of uniform microstructures of stacked MXene-PEG6 flakes into ordered thin films with excellent electrical conductivity (∼16,200 S·cm-1). Most importantly, our covalent surface modification approach with ω-functionalized PEG6 ligands (ω-PEG6-COOH, where ω: -NH2, -N3, -CH═CH2) allows for control over the degree of functionalization (incorporation of valency) of MXene. We believe that installing valency onto MXenes through short, ion conducting PEG ligands without compromising MXenes' features such as solution processability, structural stability, and electrical conductivity further enhance MXenes surface chemistry tunability and performance and widens their applications.
Collapse
Affiliation(s)
- Jacob T Lee
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Brian C Wyatt
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Gregory A Davis
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Adrianna N Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Amber L Pagan
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Archit Shah
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Babak Anasori
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
27
|
Yu LP, Zhou XH, Lu L, Xu L, Wang FJ. MXene/Carbon Nanotube Hybrids: Synthesis, Structures, Properties, and Applications. CHEMSUSCHEM 2021; 14:5079-5111. [PMID: 34570428 DOI: 10.1002/cssc.202101614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Since the successful preparation of few-layer transition metal carbides from three-dimensional MAX phases in 2011, MXenes (known as a family of layered transition metal carbides, nitrides, and carbonitrides) have been intensively studied. Though MXenes have been adopted as active materials in many applications, issues including aggregation and restacking are likely to hamper their potential applications. In order to address these prevailing challenges, the concept of MXene/carbon nanotube (CNT) hybrids was proposed initially in 2015, where CNTs were incorporated as the spacers and conductive additives. Ever since, MXene/CNT hybrids with different architectures have been synthesized by a number of methods and applied in numerous fields. Herein, after the discussion about general synthesis approaches, architectures, and properties of the hybrids, this Review summarized the recent advances in the application of MXene/CNT hybrids in energy storage devices, sensors, electrocatalysis, electromagnetic interference shielding, and water treatment, in which the function of individual components was clarified. In the end, the current research trend in this field were discussed and several technical issues were highlighted along with some suggestions on future research directions.
Collapse
Affiliation(s)
- Le Ping Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Xiao Hong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Feng Jun Wang
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| |
Collapse
|
28
|
Du Z, Wu C, Chen Y, Cao Z, Hu R, Zhang Y, Gu J, Cui Y, Chen H, Shi Y, Shang J, Li B, Yang S. High-Entropy Atomic Layers of Transition-Metal Carbides (MXenes). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101473. [PMID: 34365658 DOI: 10.1002/adma.202101473] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Indexed: 06/13/2023]
Abstract
High-entropy materials (HEMs) have great potential for energy storage and conversion due to their diverse compositions, and unexpected physical and chemical features. However, high-entropy atomic layers with fully exposed active sites are difficult to synthesize since their phases are easily segregated. Here, it is demonstrated that high-entropy atomic layers of transition-metal carbide (HE-MXene) can be produced via the selective etching of novel high-entropy MAX (also termed Mn +1 AXn (n = 1, 2, 3), where M represents an early transition-metal element, A is an element mainly from groups 13-16, and X stands for C and/or N) phase (HE-MAX) (Ti1/5 V1/5 Zr1/5 Nb1/5 Ta1/5 )2 AlC, in which the five transition-metal species are homogeneously dispersed into one MX slab due to their solid-solution feature, giving rise to a stable transition-metal carbide in the atomic layers owing to the high molar configurational entropy and correspondingly low Gibbs free energy. Additionally, the resultant high-entropy MXene with distinct lattice distortions leads to high mechanical strain into the atomic layers. Moreover, the mechanical strain can efficiently guide the nucleation and uniform growth of dendrite-free lithium on HE-MXene, achieving a long cycling stability of up to 1200 h and good deep stripping-plating levels of up to 20 mAh cm-2 .
Collapse
Affiliation(s)
- Zhiguo Du
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Cheng Wu
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yuchuan Chen
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhenjiang Cao
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Riming Hu
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yongzheng Zhang
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jianan Gu
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yanglansen Cui
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Hao Chen
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yongzheng Shi
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jiaxiang Shang
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Bin Li
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shubin Yang
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
29
|
Nemani SK, Zhang B, Wyatt BC, Hood ZD, Manna S, Khaledialidusti R, Hong W, Sternberg MG, Sankaranarayanan SKRS, Anasori B. High-Entropy 2D Carbide MXenes: TiVNbMoC 3 and TiVCrMoC 3. ACS NANO 2021; 15:12815-12825. [PMID: 34128649 DOI: 10.1021/acsnano.1c02775] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a fast-growing family of 2D materials. MXenes 2D flakes have n + 1 (n = 1-4) atomic layers of transition metals interleaved by carbon/nitrogen layers, but to-date remain limited in composition to one or two transition metals. In this study, by implementing four transition metals, we report the synthesis of multi-principal-element high-entropy M4C3Tx MXenes. Specifically, we introduce two high-entropy MXenes, TiVNbMoC3Tx and TiVCrMoC3Tx, as well as their precursor TiVNbMoAlC3 and TiVCrMoAlC3 high-entropy MAX phases. We used a combination of real and reciprocal space characterization (X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and scanning transmission electron microscopy) to establish the structure, phase purity, and equimolar distribution of the four transition metals in high-entropy MAX and MXene phases. We use first-principles calculations to compute the formation energies and explore synthesizability of these high-entropy MAX phases. We also show that when three transition metals are used instead of four, under similar synthesis conditions to those of the four-transition-metal MAX phase, two different MAX phases can be formed (i.e., no pure single-phase forms). This finding indicates the importance of configurational entropy in stabilizing the desired single-phase high-entropy MAX over multiphases of MAX, which is essential for the synthesis of phase-pure high-entropy MXenes. The synthesis of high-entropy MXenes significantly expands the compositional variety of the MXene family to further tune their properties, including electronic, magnetic, electrochemical, catalytic, high temperature stability, and mechanical behavior.
Collapse
Affiliation(s)
- Srinivasa Kartik Nemani
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Bowen Zhang
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Brian C Wyatt
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Zachary D Hood
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sukriti Manna
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Rasoul Khaledialidusti
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Weichen Hong
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Michael G Sternberg
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Babak Anasori
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
30
|
VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021; 372:372/6547/eabf1581. [DOI: 10.1126/science.abf1581] [Citation(s) in RCA: 400] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A decade after the first report, the family of two-dimensional (2D) carbides and nitrides (MXenes) includes structures with three, five, seven, or nine layers of atoms in an ordered or solid solution form. Dozens of MXene compositions have been produced, resulting in MXenes with mixed surface terminations. MXenes have shown useful and tunable electronic, optical, mechanical, and electrochemical properties, leading to applications ranging from optoelectronics, electromagnetic interference shielding, and wireless antennas to energy storage, catalysis, sensing, and medicine. Here we present a forward-looking review of the field of MXenes. We discuss the challenges to be addressed and outline research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies.
Collapse
Affiliation(s)
- Armin VahidMohammadi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Johanna Rosen
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-583 31, Sweden
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Bhaskar G, Gvozdetskyi V, Batuk M, Wiaderek KM, Sun Y, Wang R, Zhang C, Carnahan SL, Wu X, Ribeiro RA, Bud'ko SL, Canfield PC, Huang W, Rossini AJ, Wang CZ, Ho KM, Hadermann J, Zaikina JV. Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene. J Am Chem Soc 2021; 143:4213-4223. [PMID: 33719436 DOI: 10.1021/jacs.0c11397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a "zip-lock" mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).
Collapse
Affiliation(s)
- Gourab Bhaskar
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Maria Batuk
- EMAT, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | | | - Yang Sun
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Renhai Wang
- Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States.,Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chao Zhang
- Department of Physics, Yantai University, Yantai 264005, China
| | - Scott L Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States
| | - Xun Wu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States
| | - Raquel A Ribeiro
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Sergey L Bud'ko
- Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States.,Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Paul C Canfield
- Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States.,Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States
| | - Cai-Zhuang Wang
- Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States.,Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Kai-Ming Ho
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Joke Hadermann
- EMAT, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Julia V Zaikina
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|