1
|
The generation of carbon/oxygen double defects in FeP/CoP-N-C enhanced by β particles for photic driving degradation of levofloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Porphyrin-MOF-derived carbon-encapsulated copper as a selective and leaching resistant catalyst for the hydrogenation of nitriles. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Zhao H, Fang J, Xu D, Li J, Li B, Zhao H, Dong Z. Multistep protection strategy for preparation of atomically dispersed Fe–N catalysts for selective oxidation of ethylbenzene to acetophenone. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01742j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Atomically dispersed Fe atoms on three-dimensional N-doped hollow carbon spheres single-atom catalyst was prepared, which exhibit excellent catalytic performance for the catalytic oxidation of ethylbenzene under mild reaction conditions.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jian Fang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Dan Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jianfeng Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Boyang Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Huacheng Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
4
|
NiPd mediated by conductive metal organic frameworks with facilitated electron transfer for assaying of H2O2 released from living cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Xiang G, Zhang L, Chen J, Zhang B, Liu Z. A binary carbon@silica@carbon hydrophobic nanoreactor for highly efficient selective oxidation of aromatic alkanes. NANOSCALE 2021; 13:18140-18147. [PMID: 34724701 DOI: 10.1039/d1nr05695f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoreactors with a delimited void space and a large number of mesoporous structures have attracted great attention as potential heterogeneous catalysts. In this work, a cobalt and nitrogen co-doped binary carbon@silica@carbon hydrophobic nanoreactor was synthesized by an in situ synthesis method. Cobalt porphyrin was used as an active component to construct Co-Nx sites, and the purpose of the double carbon layer coating was to enhance the hydrophobicity of the surface of the nanoreactor. The optimal nanoreactor could achieve 96.9% ethylbenzene conversion and 99.1% acetophenone selectivity and showed outstanding universality to many other aromatic alkanes. The superior performance was mainly due to the presence of double carbon layers and the high content of Co-Nx sites. The double hydrophobic carbon layer coating could not only promote the adsorption of organic molecules, but also implant Co-Nx active sites on both the inner and outer surfaces of the nanoreactor. This work proposed a meaningful strategy to obtain a highly efficient nanoreactor for C-H bond oxidation.
Collapse
Affiliation(s)
- Ganghua Xiang
- Engineering Research Center of Advanced Catalysis of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.
| | - Lushuang Zhang
- Engineering Research Center of Advanced Catalysis of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Zhigang Liu
- Engineering Research Center of Advanced Catalysis of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
6
|
Rangraz Y, Heravi MM, Elhampour A. Recent Advances on Heteroatom-Doped Porous Carbon/Metal Materials: Fascinating Heterogeneous Catalysts for Organic Transformations. CHEM REC 2021; 21:1985-2073. [PMID: 34396670 DOI: 10.1002/tcr.202100124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Design and preparation of low-cost, effective, and novel catalysts are important topics in the field of heterogeneous catalysis from academic and industrial perspectives. Recently, heteroatom-doped porous carbon/metal materials have received significant attention as promising catalysts in divergent organic reactions. Incorporation of heteroatom into the carbon framework can tailor the properties of carbon, providing suitable interaction between support and metal, resulting in superior catalytic performance compared with those of traditional pure carbon/metal catalytic systems. In this review, we try to underscore the recent advances in the design, preparation, and application of heteroatom-doped porous carbon/metal catalysts towards various organic transformations.
Collapse
Affiliation(s)
- Yalda Rangraz
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 19938-93973, Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 19938-93973, Vanak, Tehran, Iran
| | - Ali Elhampour
- Department of Chemistry, Semnan University, PO Box 35131-19111, Semnan, Iran
| |
Collapse
|
7
|
Xie P, Xue C, Shi S, Du D. Visible-Light-Driven Selective Air-Oxygenation of C-H Bond via CeCl 3 Catalysis in Water. CHEMSUSCHEM 2021; 14:2689-2693. [PMID: 33877736 DOI: 10.1002/cssc.202100682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Visible-light-induced C-H aerobic oxidation is an important chemical transformation that can be applied for the synthesis of aromatic ketones. High-cost catalysts and toxic solvents were generally needed in the present methodologies. Here, an efficient aqueous C-H aerobic oxidation protocol was reported. Through CeCl3 -mediated photocatalysis, a series of aromatic ketones were produced in moderate to excellent yields. With air as the oxidant, this reaction could be performed under mild conditions in water and demonstrated high activity and functional group tolerance. This method is economical, highly efficient, and environmentally friendly, and it will provide inspiration for the development of aqueous photochemical synthesis reactions.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Sanshan Shi
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| |
Collapse
|
8
|
Dong F, Wu M, Zhang G, Liu X, Rawach D, Tavares AC, Sun S. Defect Engineering of Carbon-based Electrocatalysts for Rechargeable Zinc-air Batteries. Chem Asian J 2020; 15:3737-3751. [PMID: 32997441 DOI: 10.1002/asia.202001031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Indexed: 11/10/2022]
Abstract
Rechargeable zinc-air batteries (ZABs) are considered as one of the most promising electrochemical energy devices due to their various unique advantages. Oxygen electrocatalysis, involving the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), determines the overall performance of zinc-air batteries. Therefore, the development of highly efficient bifunctional ORR/OER catalysts is critical for the large-scale application of ZABs. Carbon-based nanomaterials have been widely reported to be efficient electrocatalysts toward both ORR and OER. The enhanced activity of these electrocatalysts are usually attributed to different doping defects, synergistic effects and even the intrinsic carbon defects. Herein, an overview of the defect engineering in carbon-based electrocatalysts for ORR and OER is provided. The different types of intrinsic carbon defects and strategies for the generation of other defects in carbon-based electrocatalysts are presented. The interaction of heteroatoms doped carbon and transition metals (TMs) is also explored. In the end, the existing challenges and future perspectives on defect engineering are discussed.
Collapse
Affiliation(s)
- Fang Dong
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada
| | - Mingjie Wu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Diane Rawach
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada
| | - Ana C Tavares
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada
| |
Collapse
|