1
|
Sebastian S, Rohila Y, Meenakshi, Ansari A, Sengupta S, Kumar D, Srivastava N, Kumar L, Gupta MK. Anti-quorum sensing activity of α-amidoamides against Agrobacterium tumefaciensNT1: Insights from molecular docking and dynamic investigations to synergistic approach of metronidazole release from gel formulations. Microb Pathog 2024; 193:106787. [PMID: 38992510 DOI: 10.1016/j.micpath.2024.106787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain. Among these compounds, three (2, 3and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favorable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics viaself-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.
Collapse
Affiliation(s)
- Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Yajat Rohila
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Meenakshi
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Sounok Sengupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India; Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India.
| | - Namita Srivastava
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Lokender Kumar
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India; Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
2
|
Monika, Meenakshi, Brahma M, Maruthi M, Selvakumar S, Ansari A, Gupta MK. N-Hydroxyalkanamide Based Organo/hydrogels as Novel Scaffolds for pH-Dependent Metronidazole and Theophylline Release. Chem Biodivers 2024; 21:e202400105. [PMID: 38700110 DOI: 10.1002/cbdv.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The traditional delivery of metronidazole and theophylline presents challenges like bitter taste, variable absorption, and side effects. However, gel-based systems offer advantages including enhanced targeted drug delivery, minimized side effects, and improved patient compliance, effectively addressing these challenges. Consequently, a cost-effective synthesis of N-hydroxyalkanamide gelators with varying alkyl chain lengths was achieved in a single-step reaction procedure. These gelators formed self-assembled aggregates in DMSO/water solvent system, resulting in organo/hydrogels at a minimum gelation concentration of 1.5 % w/v. Subsequently, metronidazole and theophylline were encapsulated within the gel core and released through gel-to-sol transition triggered by pH variation at 37 °C, while maintaining the structural-activity relationship. UV-vis spectroscopy was employed to observe the drug release behavior. Furthermore, in vitro cytotoxicity assays revealed cytotoxic effects against A549 lung adenocarcinoma cells, indicating anti-proliferative activity against human lung cancer cells. Specifically, the gel containing theophylline (16HAD+Th) exhibited cytotoxicity on cancerous A549 cells with IC50 values of 19.23±0.6 μg/mL, followed by the gel containing metronidazole (16HAD+Mz) with IC50 values of 23.75±0.7 μg/mL. Moreover, the system demonstrated comparable antibacterial activity against both gram-negative (E. coli) and gram-positive bacteria (S. aureus).
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Meenakshi
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Mettle Brahma
- Department of Biochemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Sermadurai Selvakumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, Madhya Pradesh, India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| |
Collapse
|
3
|
Sebastian S, Rohila Y, Yadav E, Bhardwaj P, Sudheer Babu Y, Maruthi M, Ansari A, Gupta MK. Supramolecular Organo/hydrogel-Fabricated Long Alkyl Chain α-Amidoamides as a Smart Soft Material for pH-Responsive Curcumin Release. Biomacromolecules 2024; 25:975-989. [PMID: 38189243 DOI: 10.1021/acs.biomac.3c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Low-molecular-mass gelators, due to their excellent biocompatibility, low toxicological profile, innate biodegradability and ease of fabrication have garnered significant interest as they self-assemble through non-covalent interactions. In this study, we have designed and synthesized a series of six α-amidoamides by varying the hydrophobic alkyl chain length (C12-C22), which were well characterized using different spectral techniques. These α-amidoamides formed self-assembled aggregates in a DMSO/water solvent system affording organo/hydrogels at 0.66% w/v, which is the minimum gelation concentration (MGC) making them as remarkable supergelators. The various functionalities present in these gelators such as amides and alkyl chain length pave the way toward excellent gelation mechanism through hydrogen bonding and van der Waals interaction as evidenced from FTIR spectroscopy. Notably, as the chain length increased, organo/hydrogels became more thermally stable. Rheological results showed that the stability and strength of these gelators were considerably impacted by variations in chain length. The SEM morphology revealed dense sheet architectures of the organo/hydrogel samples. Organo/hydrogels have a significant impact on the advancement of innovative drug delivery systems that respond to various stimuli, ushering in a new era in pharmaceutical technology. Inspired by this, we encapsulated curcumin, a chemopreventive medication, into the gel core and further released via gel-to-sol transition induced by pH variation at 37 °C, without any alteration in structure-activity relationship. The drug release behavior was observed by UV-vis spectroscopy. Moreover, cell viability and cell invasion experiments demonstrate that the gel formulations exhibit high biocompatibility and low cytotoxicity. Among the tested formulations, 5e+Cur exhibited remarkable efficacy in controlling A549 cell migration, suggesting significant potential for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Yajat Rohila
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Eqvinshi Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Priya Bhardwaj
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana,India
| | - Yangala Sudheer Babu
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana,India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana,India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| |
Collapse
|
4
|
Nikam AN, Roy A, Raychaudhuri R, Navti PD, Soman S, Kulkarni S, Shirur KS, Pandey A, Mutalik S. Organogels: "GelVolution" in Topical Drug Delivery - Present and Beyond. Curr Pharm Des 2024; 30:489-518. [PMID: 38757691 DOI: 10.2174/0113816128279479231231092905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 05/18/2024]
Abstract
Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.
Collapse
Affiliation(s)
- Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Amrita Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Prerana D Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Krishnaraj Somayaji Shirur
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
5
|
Sebastian S, Yadav E, Bhardwaj P, Maruthi M, Kumar D, Gupta MK. Facile one-pot multicomponent synthesis of peptoid based gelators as novel scaffolds for drug incorporation and pH-sensitive release. J Mater Chem B 2023; 11:9975-9986. [PMID: 37823277 DOI: 10.1039/d3tb01527k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Infections caused by bacteria are the primary cause of illness and death globally, and antibiotics are the most commonly used medications to treat them. However, there are certain inherent problems in administering these drugs without any changes to their effectiveness. In order to sustain the targeted dosage over time, the use of a biocompatible local drug delivery system using low molecular mass gelators is preferred as a potential approach to reduce its side effects. Low molecular weight organic gelators (LMWOGs) have drawn a lot of attention due to their numerous and varied applications in multiple fields. But nowadays its quite a challenging task to synthesize new types of LMWOGs that can fill the significant gap towards potential applications. In this work, we have explored a multicomponent pathway for the synthesis of a small repertoire of peptoids from simple building blocks by a one-pot Ugi reaction. A variety of novel effective low molecular weight organic gelators have been synthesized, leading to the formation of stable self-assembled aggregates in various solvents such as DMSO, aqueous DMSO, and methanol. Consequently, these aggregates give rise to the creation of organogels and organo/hydrogels. The gels have a minimum gelation concentration (MGC) of 1-2% w/v with high thermal stability. Furthermore, successful encapsulation and release of metronidazole (MZ) were achieved within the gel matrix under physiological pH conditions at 37 °C, ensuring the preservation of its structural and functional properties. The results demonstrated that the release rate of MZ from the organo/hydrogels is contingent on pH, exhibiting a gradual and regulated release in mild alkaline environments. Moreover, the devised system displayed noteworthy antimicrobial efficacy against E. coli, underscoring the potential of these novel low molecular weight organic gels (LMWOGs) as effective drug delivery systems in the pharmaceutical industry. The gel formulations exhibit biocompatibility and negligible cytotoxicity, as evidenced by cell viability studies conducted using the MTT assay.
Collapse
Affiliation(s)
- Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Eqvinshi Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Priya Bhardwaj
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173 229, Himachal Pradesh, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| |
Collapse
|
6
|
Popescu I, Constantin M, Solcan G, Ichim DL, Rata DM, Horodincu L, Solcan C. Composite Hydrogels with Embedded Silver Nanoparticles and Ibuprofen as Wound Dressing. Gels 2023; 9:654. [PMID: 37623109 PMCID: PMC10454181 DOI: 10.3390/gels9080654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The wound healing process is often slowed down as a result of complications from bacterial infections and inflammatory reactions. Therefore, it is necessary to develop dressings with fast antibacterial and anti-inflammatory activity that shorten the wound healing period by promoting cell migration and proliferation. Chitosan (CS)-based hydrogels have been widely studied for their antibacterial and wound healing capabilities. Herein, we developed a composite hydrogel based on CS and PVA embedding silver nanoparticles (AgNPs) with antibacterial properties and ibuprofen (Ib) as an anti-inflammatory agent. The hydrogel prepared by double physical cross-linking, with oxalic acid and by freeze-thawing, loaded with 0.225 wt.% AgNPs and 0.264 wt.% Ib, displayed good mechanical properties (compressive modulus = 132 kPa), a high swelling degree and sustained drug delivery (in simulated skin conditions). Moreover, the hydrogel showed strong antibacterial activity against S. aureus and K. pneumoniae due to the embedded AgNPs. In vivo, this hydrogel accelerated the wound regeneration process through the enhanced expression of TNF alpha IP8, by activating downstream cascades and supporting the healing process of inflammation; Cox2, which enhances the migration and proliferation of cells involved in re-epithelization and angiogenesis; MHCII, which promotes immune cooperation between local cells, eliminating dead tissue and controlling infection; the intense expression of Col I as a major marker in the tissue granulation process; and αSMA, which marks the presence of myofibroblasts involved in wound closure and indicates ongoing re-epithelization. The results reveal the potential healing effect of CS/PVA/AgNPs/Ib hydrogels and suggest their potential use as wound dressings.
Collapse
Affiliation(s)
- Irina Popescu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.P.); (M.C.)
| | - Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.P.); (M.C.)
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania; (G.S.); (L.H.)
| | - Daniela Luminita Ichim
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.L.I.); (D.M.R.)
| | - Delia Mihaela Rata
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.L.I.); (D.M.R.)
| | - Loredana Horodincu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania; (G.S.); (L.H.)
| | - Carmen Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania; (G.S.); (L.H.)
| |
Collapse
|
7
|
Yadav E, Sebastian S, Gupta MK. Aminopyridinyl Tricosanamide Based Pseudoplastic and Thermoreversible Oleogels for pH‐Dependant
in vitro
Release of Metronidazole. ChemistrySelect 2022. [DOI: 10.1002/slct.202203014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eqvinshi Yadav
- Department of Chemistry School of Basic Sciences Central University of Haryana Mahendergarh-123 031 Haryana India
| | - Sharol Sebastian
- Department of Chemistry School of Basic Sciences Central University of Haryana Mahendergarh-123 031 Haryana India
| | - Manoj K. Gupta
- Department of Chemistry School of Basic Sciences Central University of Haryana Mahendergarh-123 031 Haryana India
| |
Collapse
|
8
|
Li C, Wang K, Xie D. Green Fabrication and Release Mechanisms of pH-Sensitive Chitosan-Ibuprofen Aerogels for Controlled Transdermal Delivery of Ibuprofen. Front Chem 2021; 9:767923. [PMID: 34858944 PMCID: PMC8630543 DOI: 10.3389/fchem.2021.767923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/28/2023] Open
Abstract
Ibuprofen is a potent non-steroidal anti-inflammatory drug due to its analgesic, antipyretic, and anti-inflammatory actions. However, its poor solubility in water makes it difficult to manufacture ibuprofen tablets, which limited the application of ibuprofen in drug delivery systems. Polymer–drug aerogels have attracted huge interest in optimizing the drug delivery efficiency and improving the physicochemical characteristics and therapeutic quality. Here, chitosan–ibuprofen aerogels with excellent swelling, high biocompatibility, and better drug delivery efficiency were synthesized by a simple method. Our study found that the chitosan–ibuprofen aerogels exhibited remarkably improved thermal stability, excellent swelling ratio, and high drug loading. As a consequence of these favorable properties, the chitosan–ibuprofen aerogels exhibited improved drug delivery efficiency and achieved drug prolonged administration. Our study highlights the great potential of polymer–drug aerogels in improving the drug delivery efficiency of transdermal drug delivery systems.
Collapse
Affiliation(s)
- Chen Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Ke Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Dong Xie
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Biomaterials Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
9
|
Alene DY, Arumugaperumal R, Shellaiah M, Sun KW, Chung WS. Stiff-Stilbene-Bridged Biscalix[4]arene as a Highly Light-Responsive Supramolecular Gelator. Org Lett 2021; 23:2772-2776. [DOI: 10.1021/acs.orglett.1c00672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dagninet Yeshiwas Alene
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Reguram Arumugaperumal
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Muthaiah Shellaiah
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|