1
|
Iradukunda Y, Kang JY, Zhao XB, Fu XK, Han SQ, Adam KM, Ha W, Shi YP. Glutathione-Conjugated Fluorometric Ratiometric NIR-Silicon Nanoparticles and Its Applications for In Vitro and In Vivo Imaging. ACS APPLIED BIO MATERIALS 2024; 7:6631-6640. [PMID: 39302025 DOI: 10.1021/acsabm.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glutathione (GSH), a tripeptide molecule, is the most abundant nonprotein biothiol in living cells, playing a crucial role in preventing oxidative damage to cellular components and maintaining intracellular redox homeostasis. As a thiol molecule, GSH contains a sulfhydryl (-SH) group that is vital for the body's response to reactive oxygen species (ROS). To confirm whether GSH can be used as a bioindicator or in the early diagnosis of cancers at the cellular level, it is essential to achieve highly selective detection and conjugation of GSH to silicon nanoparticles (SiNPs) under pathological conditions. We are herein excited to report a type of fluorescent ratiometric near-infrared silicon nanoparticle (NIR-SiNP) probe, that is, glutathione peptide conjugated (NIR-SiNPs-GSH), which simultaneously possess small pore sizes at an average of 6.7 nm, an emission of 670 nm, a bioimaging functionality of living cancer cells and animals, and favorable biocompatibility. Taking advantage of these virtues, we further manifest that such resulting NIR-SiNPs, NIR-SiNPs-GSH bioprobes are marvelously worthy for immunofluorescence imaging of cancer cells and living mice. Furthermore, it was shown that DAPI and probes could selectively stain malignant tumor cell nuclei, indicating the possibility for bioimaging and identification of cancer cells and animals. In summary, the suggested NIR-SiNPs-GSH probe has the potential to be a very effective chemical tool for early tumor detection in the future.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Khalid Mohammed Adam
- Department of Chemistry, Faculty of Education, University of Kordofan, El Obeid 51111, Sudan
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Nsanzamahoro S, Nan F, Shen L, Iradukunda Y, Li B, Yu WW. Designing a Hypoxia-Activated Sensing Platform Using an Azo Group-Triggered Reaction with the Formation of Silicon Nanoparticles. Anal Chem 2024; 96:11977-11984. [PMID: 38975827 DOI: 10.1021/acs.analchem.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Hypoxia is known as a specific signal of various diseases, such as liver fibrosis. We designed a hypoxia-sensitive fluorometric approach that cleaved the azo bond (N═N) in the presence of hypoxia-controlled agents (sodium dithionite and azoreductase). 4-(2-Pyridylazo) resorcinol (Py-N═N-RC) bears a desirable hypoxia-responsive linker (N═N), and its azo bond breakup can only occur in the presence of sodium dithionite and azoreductase and leads to the release of 2,4-dihydroxyaniline, which can react with 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane to generate yellow fluorescent silicon nanoparticles. This approach exhibited high selectivity and sensitivity toward both sodium dithionite and azoreductase over other potential interferences. The mouse liver microsome, which is known to contain azoreductase, was applied and confirmed the feasibility of the designed platform. Py-N═N-RC is expected to be a practical substrate for hypoxia-related biological analyses. Furthermore, silicon nanoparticles were successfully applied for Hela cell imaging owing to their negligible cytotoxicity and superb biocompatibility.
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| | - Fuchun Nan
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| | - Lanbo Shen
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, China
| | - Yves Iradukunda
- Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Li
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Teng J, Zhao W, Zhang S, Yang D, Liu Y, Huang R, Ma Y, Jiang L, Wei H, Zhang J, Chen J. Injectable nanoparticle-crosslinked xyloglucan/ε-poly-l-lysine composite hydrogel with hemostatic, antimicrobial, and angiogenic properties for infected wound healing. Carbohydr Polym 2024; 336:122102. [PMID: 38670773 DOI: 10.1016/j.carbpol.2024.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.
Collapse
Affiliation(s)
- Jingmei Teng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Wei Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Shengyu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Dan Yang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yu Liu
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Rongjian Huang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yuxi Ma
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Lei Jiang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jiantao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Jing Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
4
|
Han Y, Wang Y, Zhang H, Zhao L, Qiu H. Facile synthesis of yellow-green fluorescent silicon nanoparticles and their application in detection of nitrophenol isomers. Talanta 2023; 257:124347. [PMID: 36801561 DOI: 10.1016/j.talanta.2023.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
A clear formation mechanism is essential for the controllable synthesis of nanomaterials with different optical properties, which is also one of the challenges facing the preparation of fluorescent silicon nanomaterials. In this work, a one-step room temperature synthesis method was established to prepare yellow-green fluorescent silicon nanoparticles (SiNPs). The obtained SiNPs exhibited excellent pH stability, salt tolerance, anti-photobleaching ability and biocompatibility. Based on X-ray photoelectron spectroscopy, transmission electron microscopy, ultra high performance liquid chromatography tandem mass spectrometry and other characterization data, the formation mechanism of the SiNPs was proposed, which provided a theoretical basis and important reference for the controllable preparation of SiNPs and other fluorescent nanomaterials. In addition, the obtained SiNPs illustrated excellent sensitivity for nitrophenol isomers, the linear range of o-nitrophenol, m-nitrophenol, p-nitrophenol was 0.05-600 μM, 20-600 μM and 0.01-600 μM under the λex and λem were set as 440 nm and 549 nm, and related limit detection was 16.7 nM, 6.7 μM and 3.3 nM, respectively. The developed SiNP-based sensor achieved satisfactory recoveries in detecting nitrophenol isomers in a river water sample, showing great promise in practical applications.
Collapse
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiang Wang
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Pan C, Qin X, Lu M, Ma Q. Water Soluble Silicon Nanoparticles as a Fluorescent Probe for Highly Sensitive Detection of Rutin. ACS OMEGA 2022; 7:28588-28596. [PMID: 35990497 PMCID: PMC9386801 DOI: 10.1021/acsomega.2c03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 05/17/2023]
Abstract
In this work, water-soluble fluorescent silicon nanoparticles (SiNPs) were prepared by one-pot hydrothermal method using 3-(2-aminoethylamino)propyldimethoxymethylsilane (AEAPDMMS) as a silicon source and amidol as a reducing agent. The prepared SiNPs showed bright green fluorescence, excellent stability against photobleaching, salt tolerance, temperature stability, and good water solubility. Due to the internal filtration effect (IFE), rutin could selectively quench the fluorescence of the SiNPs. Based on such phenomena, a highly sensitive fluorescence method was established for rutin detection. The linear range and limit of detection (LOD) were 0.05-400 μM and 15.2 nM, respectively. This method was successfully applied to detect rutin in the samples of rutin tablets, Sophora japonica, fry Sophora japonica, and S. japonica carbon with satisfactory recovery.
Collapse
|
6
|
F-doped silicon quantum dots as a novel fluorescence nanosensor for quantitative detection of new coccine and application in food samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Pan C, Wen Q, Ma L, Qin X, Feng S. Green-emitting silicon nanoparticles as a fluorescent probe for highly-sensitive crocin detection and pH sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel green fluorescent silicon nanoparticles were synthesized via a one-pot hydrothermal method and utilized as a fluorescent probe for highly sensitive and accurate detection of crocin and pH sensing.
Collapse
Affiliation(s)
- Congjie Pan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Qiaoqiao Wen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Longfei Ma
- Henan Police College, Zhengzhou, 450046, China
| | - Xuezhen Qin
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Suxiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China
| |
Collapse
|
8
|
Nsanzamahoro S, Wang WF, Zhang Y, Shi YP, Yang JL. Synthesis of orange-emissive silicon nanoparticles as "off-on" fluorescence probe for sensitive and selective detection of l-methionine and copper. Talanta 2021; 231:122369. [PMID: 33965034 DOI: 10.1016/j.talanta.2021.122369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023]
Abstract
Fluorescent silicon nanoparticles (Si NPs) are of great interest as they are free of heavy ions. However, most of Si NPs exhibit blue or green emission, while orange or red-emitting Si NPs are required for an extensive range of applications. Copper ion (Cu2+) and l-methionine (L-Met) detection is critically valuable point since their abnormal level is an indicator of various diseases. In this work, we illustrate an "off-on" method for sensitively and selectively determination of Cu2+ and L-Met using Si NPs as fluorescent probe. The Si NPs emitting orange fluorescence with the quantum yield of 2.23% were prepared via one and easy step of hydrothermal treatment of 3(2-aminoethylamino) propyl (dimethoxymethylsilane) (AEAPDMMS) and 2-aminophenol as precursors. The fluorescence of Si NPs was quenched in the presence of Cu2+ due to the strong metal-ligand coordination and electrostatic interactions between the large amount of amino and hydroxyl groups on the surface of Si NPs and Cu2+. Surprisingly, the resulted non-fluorescent Si NPs-Cu2+ complex displayed a fluorescence "turn-on" toward L-Met, due to the competitive coordination of Cu2+ between L-Met and Si NPs which leads to the unique "off-on" response to L-Met after the release of free Si NPs. The as-proposed approach is fast, simple, low cost and environmental-friendly. More importantly, it has been applied in the determination of Cu2+ and L-Met in water and urine samples, respectively with satisfactory recoveries. Furthermore, the approach could detect Cu2+ and L-Met with detection limit of 0.012 μM and 0.07 μM, which are lower than the level of Cu2+ in drinking water and of L-Met in human urine sample (maximum ~20 μM and ~5.9 μM, respectively).
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| |
Collapse
|
9
|
Hui S, Majee P, Singha DK, Daga P, Mondal SK, Mahata P. pH response of a hydroxyl-functionalized luminescent metal–organic framework based phosphor. NEW J CHEM 2021. [DOI: 10.1039/d1nj00366f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ligand sensitized Tb3+ centered emission of Tb-doped Y-based hydroxyl functionalized MOFs has been utilized for pH sensing in the visible range.
Collapse
Affiliation(s)
- Sayani Hui
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | | | - Pooja Daga
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Partha Mahata
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
10
|
Pan C, Wen Q, Ma L, Qin X, Feng S. Novel water-dispersible silicon nanoparticles as a fluorescent and colorimetric dual-mode probe for emodin detection. NEW J CHEM 2021. [DOI: 10.1039/d1nj01775f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel fluorescent and colorimetric dual-mode sensing method based on water-dispersible SiNPs was constructed for the sensitive detection of emodin.
Collapse
Affiliation(s)
- Congjie Pan
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou
- China
| | - Qiaoqiao Wen
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou
- China
| | | | - Xuezhen Qin
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou
- China
| | - Suxiang Feng
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou
- China
| |
Collapse
|