1
|
Shiroudi A, Śmiechowski M, Czub J, Abdel-Rahman MA. A Computational Analysis of the Proton Affinity and the Hydration of TEMPO and Its Piperidine Analogs. Chemphyschem 2024:e202400518. [PMID: 39222322 DOI: 10.1002/cphc.202400518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The study investigated the impact of protonation and hydration on the geometry of nitroxide radicals using B3LYP and M06-2X methods. Results indicated that TEMPO exhibited the highest proton affinity in comparison to TEMPOL and TEMPONE. Two pathways contribute to hydrated protonated molecules. TEMPO shows lower first enthalpies of hydration (ΔH1-M), indicating stronger H-bonding interactions, while TEMPONE shows higher values, indicating weaker interactions with H2O. Solvent effects affect charge distribution by decreasing their atomic charge. Spin density (SD) is primarily concentrated in the NO segment, with minimal water molecule contamination. Protonation increases SD on N-atom, while hydration causes a more pronounced redistribution for water molecules. The stability of the dipolar structure (>N⋅+-O-) is evident in SD redistributions. The frontier molecular orbital (FMO) analysis of TEMPONE reveals a minimum EHOMO-LUMO gap (EH-L), enhancing the piperidine ring's reactivity. TEMPO is the most nucleophilic species, while TEMPONE exhibits strong electrophilicity. Transitioning from NO radicals to protonated forms increases the EH-L gap, indicating protonation stabilizes FMOs. Increased water molecules make the molecule less reactive, while increasing hydration decreases this energy gap, making the molecule more reactive. A smaller EH-L gap indicates the compound becomes softer and more prone to electron density and reactivity changes.
Collapse
Affiliation(s)
- Abolfazl Shiroudi
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Mohamed A Abdel-Rahman
- College of Engineering, Peking University, Beijing, 10087, China
- Department of Chemistry, Faculty of Science, Suez University, P.O. Box: 43221, Suez, Egypt
| |
Collapse
|
2
|
Thamleena H, Mathew J, Sajith PK. Unraveling the Isotropic Hyperfine Coupling Constants of Nitroxide Radicals via Molecular Electrostatic Potential Analysis. J Phys Chem A 2024. [PMID: 39052117 DOI: 10.1021/acs.jpca.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Nitroxide radicals have wide and promising applications as organic magnetic materials. Modulating the isotropic hyperfine coupling constants (HFCCs) of these radicals through proper structural design is an effective strategy for their application as spin probes and spin labels. In the present work, density functional theory calculations were carried out to develop a robust descriptor based on the molecular electrostatic potential for nitrogen HFCCs of nitroxide radicals. Forty nitroxide radicals from five distinct classes, namely, derivatives of cyclic, acyclic, imino, nitronyl, and benzimidazole nitronyl nitroxides, were selected, and the molecular electrostatic potential (MESP) at the nitrogen atom (VN) of the NO moiety was calculated. The VN values efficiently capture the electronic changes associated with the steric and electronic nature of these systems. A significant correlation between VN values and the experimental HFCCs of nitrogen nuclei demonstrates the applicability of VN as a simple and efficient descriptor for monitoring HFCCs. Furthermore, a good correlation between VN and experimental nitrogen HFCCs for each class of nitroxide radicals indicates the use of VN in the evaluation of the magnetic nature of the nitroxide radicals. The findings in this work are expected to facilitate the design of novel nitroxide radicals with desirable magnetic properties based on MESP topology analysis.
Collapse
Affiliation(s)
- Hanna Thamleena
- Department of Chemistry, St. Joseph's College (Autonomous), (Affiliated to the University of Calicut), Devagiri, Kerala 673008, India
| | - Jomon Mathew
- Department of Chemistry, St. Joseph's College (Autonomous), (Affiliated to the University of Calicut), Devagiri, Kerala 673008, India
| | - Pookkottu K Sajith
- Department of Chemistry, Farook College (Autonomous), Kozhikode 673632, India
| |
Collapse
|
3
|
Femina C, Sajith PK, Remya K, Thomas R, Solomon RV. Theoretical Insights into the Structural and Optical Properties of D-π-A-based Cyanostilbene Systems of α and β Variants. ACS OMEGA 2024; 9:22764-22776. [PMID: 38826558 PMCID: PMC11137715 DOI: 10.1021/acsomega.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 06/04/2024]
Abstract
The π-conjugated organic molecules containing cyanostilbene motifs have been extensively investigated due to their great potential applications in several optoelectronic and biological fields. Developing efficient molecules in this respect requires strategic structural engineering and a deep understanding of the structure-property relationship at the molecular level. In this context, understanding the impact of positional isomerism in cyanostilbene systems is a fundamental aspect of designing desired materials with improved photophysical properties. Herein, we designed ten donor-π-acceptor (D-π-A) type cyanostilbene derivatives (P1 - P10) with different π linkers and compared their structural and optoelectronic properties arising from the positional variations of the -CN group (α and β- variations) through the utilization of density functional theory (DFT) and time-dependent DFT (TDDFT) methods. The topological analyses of the electron density are used to explain the relatively high stability of α isomer compared to that of β. Frontier molecular orbital analysis reveals that 17 molecules tend to show a reduced highest occupied molecular orbital-lowest unoccupied molecular orbital gap, and most of them showed a greater nonlinear optical (NLO) character compared to the parent molecule. TDDFT calculations indicate that β isomers show higher absorption maxima compared to their α counterparts. Among all the scrutinized molecules, the absorption maximum extended up to 602 nm for P9 and it possesses the highest first-order hyperpolarizability. This study sheds light on positional isomers and their reactivity, absorption spectra, and NLO properties of D-π-A type architecture that can be suitably tuned by appropriating the π-bridge for practical applications.
Collapse
Affiliation(s)
- Cherumannil Femina
- Department
of Chemistry, Farook College (Autonomous),
(Affiliated to the University of Calicut), Kozhikode 673632, Kerala, India
| | - Pookkottu K. Sajith
- Department
of Chemistry, Farook College (Autonomous),
(Affiliated to the University of Calicut), Kozhikode 673632, Kerala, India
| | - Karunakaran Remya
- Government
Women’s Polytechnic College, Kozhikode 673009, Kerala, India
| | - Reji Thomas
- Department
of Chemistry, Farook College (Autonomous),
(Affiliated to the University of Calicut), Kozhikode 673632, Kerala, India
| | - Rajadurai Vijay Solomon
- Department
of Chemistry, Madras Christian College (Autonomous),
(Affiliated to the University of Madras), Chennai 600059, Tamil Nadu, India
| |
Collapse
|
4
|
Shiroudi A, Śmiechowski M, Czub J, Abdel-Rahman MA. Computational analysis of substituent effects on proton affinity and gas-phase basicity of TEMPO derivatives and their hydrogen bonding interactions with water molecules. Sci Rep 2024; 14:8434. [PMID: 38600208 PMCID: PMC11006853 DOI: 10.1038/s41598-024-58582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
The study investigates the molecular structure of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives in the gas phase using B3LYP and M06-2X functional methods. Intermolecular interactions are analyzed using natural bond orbital (NBO) and atoms in molecules (AIM) techniques. NO2-substituted TEMPO displays high reactivity, less stability, and softer properties. The study reveals that the stability of TEMPO derivatives is mainly influenced by LP(e) → σ∗ electronic delocalization effects, with the highest stabilization observed on the oxygen atom of the nitroxide moiety. This work also considers electron density, atomic charges, and energetic and thermodynamic properties of the studied NO radicals, and their relative stability. The proton affinity and gas-phase basicity of the studied compounds were computed at T = 298 K for O-protonation and N-protonation, respectively. The studied DFT method calculations show that O-protonation is more stable than N-protonation, with an energy difference of 16.64-20.77 kcal/mol (22.80-25.68 kcal/mol) at the B3LYP (M06-2X) method. The AIM analysis reveals that the N-O…H interaction in H2O complexes has the most favorable hydrogen bond energy computed at bond critical points (3, - 1), and the planar configurations of TEMPO derivatives exhibit the highest EHB values. This indicates stronger hydrogen bonding interactions between the N-O group and water molecules.
Collapse
Affiliation(s)
- Abolfazl Shiroudi
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
- BioTechMed Center, Gdańsk University of Technology, 80-233, Gdańsk, Poland.
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- BioTechMed Center, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Mohamed A Abdel-Rahman
- Department of Chemistry, Faculty of Science, Suez University, P.O. Box: 43221, Suez, Egypt.
| |
Collapse
|
5
|
Lohithakshamenon R, Prasanthkumar KP, Femina C, Sajith PK. Bond Strength and Interaction Energies in Togni Reagents: Insights from Molecular Electrostatic Potential-Based Parameters. J Phys Chem A 2024; 128:727-737. [PMID: 38253016 DOI: 10.1021/acs.jpca.3c06378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Togni reagents and their analogs, classified as hypervalent iodine(III) complexes, serve as potent trifluoromethylation agents. The interplay of cis and trans factors plays a pivotal role in shaping their performance, affecting aspects such as bond strength, interaction energies, stability, and subsequent nucleophilic reactions. In this context, we propose the utilization of the molecular electrostatic potential (MESP) at the carbon atom (VC) of the I-CF3 moiety as a sensitive parameter to quantify the cis and trans influences in Togni-type reagents. Our study has shown that VC serves as a convenient probe for determining the heterolytic bond dissociation energy (BDE) and, consequently, assessing the reactivity of these reagents. Moreover, these parameters have been successfully applied to evaluate the strength of the σ-hole interactions with nucleophiles (Cl- and NMe3). Additionally, we provide insights into interactions of Togni reagents with Brønsted acids such as HCl and HSO3F, elucidating them in terms of MESP topological parameters. These findings yield valuable information about the electronic properties of hypervalent iodine reagents, particularly Togni-type reagents, offering the potential for optimizing structurally modified reagents with enhanced activity and stability.
Collapse
Affiliation(s)
| | - Kavanal P Prasanthkumar
- Post Graduate and Research Department of Chemistry, Maharaja's College, Ernakulam 682011, India
| | | | | |
Collapse
|
6
|
Ismail TM, Patkar D, Sajith PK, Deshmukh MM. Interplay of Hydrogen, Pnicogen, and Chalcogen Bonding in X(H 2O) n=1-5 (X = NO, NO +, and NO -) Complexes: Energetics Insights via a Molecular Tailoring Approach. J Phys Chem A 2023. [PMID: 38029408 DOI: 10.1021/acs.jpca.3c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nitric oxide (NO) and its redox congeners (NO+ and NO-), designated as X, play vital roles in various atmospheric and biological events. Understanding the interaction between X and water is inevitable to explain the different reactions that occur during these events. The present study is a unified attempt to explore the noncovalent interactions in microhydrated networks of X using the MP2/aug-cc-pVTZ//MP2/6-311++G(d,p) level of theory. The interactions between X and water have been probed by the molecular electrostatic potential (MESP) by exploiting the features of the most positive (Vmax) and most negative potential (Vmin) sites. The individual energy and cooperativity contributions of various types of noncovalent interactions present in X(H2O)n=1-5 complexes are estimated with the help of a molecular tailoring-based approach (MTA-based). The MTA-based analysis reveals that among various possible interactions in NO(H2O)n complexes, the water···water hydrogen bonds (HBs) are the strongest. Neutral NO can form hydrogen and pnicogen bonds (PBs) with water depending on the orientation; however, such HBs and PBs are the weakest. On the other hand, in the NO+(H2O)n complexes, the NO+···water interactions that occur through PBs are the strongest; the next one is the chalcogen bonding (CB), and the water···water HBs are the weakest. In the case of the NO-(H2O)n complexes, the HB interactions via both N and O atoms of NO- and water molecules are the strongest ones. The strength of water···water HB interactions is also seen to increase with the increase in the number of water molecules in NO-(H2O)n. The present study exemplifies the applicability of MTA-based calculations for quantifying various types of individual noncovalent interactions and their interplay in microhydrated networks of NO and its related ions.
Collapse
Affiliation(s)
- Thufail M Ismail
- Department of Chemistry, Farook College, Kozhikode, Kerala 673632, India
| | - Deepak Patkar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Pookkottu K Sajith
- Department of Chemistry, Farook College, Kozhikode, Kerala 673632, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
7
|
Abdulla HM, Gangwar P, Sajith PK, Ramachandran CN. Probing the Interaction of NO with C 60: Comparison between Endohedral and Exohedral Complexes. J Phys Chem A 2023; 127:3598-3607. [PMID: 37051864 DOI: 10.1021/acs.jpca.3c00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Recent advances in synthetic methodologies have opened new strategies for synthesizing stable metal-free electron spin systems based on fullerenes. Introducing nitric oxide (NO) inside a fullerene cage is one of the methods to attain this goal. In the present study, dispersion corrected density functional theory (B3LYP-D3) has been used to evaluate the structure, stability, and electronic properties of NO encapsulated fullerene NO@C60 and compared those with its exohedral fullerene NO.C60 analog. The calculated stabilization energy for NO@C60 is appreciably higher than NO.C60, and this difference is comprehended via the Quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) topological analyses. The delocalization of electron density of NO and the C60 cage in NO@C60 is discussed using electrostatic potential analysis. In addition, an attempt has been made to understand the different locations and orientations involving the interaction of two NO radicals and the fullerene C60. It is shown that the encapsulation of the NO dimer inside the C60 cage is an energetically unfavorable process. On the other hand, stable structures are obtained upon the physisorption of other NO on the surface of NO@C60 and NO.C60. The present work provides an in-depth understanding of the interaction of NO and C60 fullerene, its preferable position, and its orientation in both endohedral and exohedral complexes.
Collapse
Affiliation(s)
| | - Peaush Gangwar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pookkottu K Sajith
- Department of Chemistry, Farook College, Kozhikode, Kerala 673632, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
8
|
Jeevana R, Kavitha AP, Abi TG, Sajith PK, Varughese JK, Aravindakshan KK. Targeting COVID-19 pandemic: in silico evaluation of 2-hydroxy-1, 2-diphenylethanone N(4)-methyl-N(4)-phenylthiosemicarbazone as a potential inhibitor of SARS-CoV-2. Struct Chem 2022; 34:1-17. [PMID: 36274924 PMCID: PMC9574830 DOI: 10.1007/s11224-022-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
The global spread of the COVID-19 pandemic caused by the etiological agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), triggered researchers to identify and develop novel antiviral therapeutics. Herein, we report a new molecule 2-hydroxy-1,2-diphenylethanone N(4)-methyl-N(4)-phenyl thiosemicarbazone (BMPTSC), as a potential inhibitor of SARS-CoV-2. BMPTSC was synthesized, characterized by IR and NMR studies, and the structural parameters were analyzed computationally by B3LYP/cc-pVDZ method. Molecular docking studies were performed to get insights into the energetics and compatibility of BMPTSC against various SARS-CoV-2 drug targets. The best docking poses of target protein-BMPTSC complex structures were further subjected to molecular dynamics (MD) simulations. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations on the binding of BMPTSC with the target proteins viz. spike glycoprotein and ACE-2 protein showed energy values of -179.87 and -145.61 kJ/mol, respectively. Moreover, BMPTSC obeys Lipinski's rule, and further in silico assessment of oral bioavailability, bioactivity scores, ADME, drug-likeness, and medicinal chemistry friendliness suggests that this molecule is a promising candidate for the COVID-19 drug discovery process. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02033-8.
Collapse
Affiliation(s)
- Rajan Jeevana
- PG & Research Department of Chemistry, Govt. College, Madappally, Kozhikode, 673102 Kerala India
| | | | - Thoppilan G. Abi
- PG & Research Department of Chemistry, Sacred Heart College (Autonomous), Kochi, 682013 Kerala India
| | - Pookkottu K. Sajith
- PG & Research Department of Chemistry, Farook College (Autonomous), Kozhikode, 673632 Kerala India
| | - Jibin K. Varughese
- PG & Research Department of Chemistry, Sacred Heart College (Autonomous), Kochi, 682013 Kerala India
| | | |
Collapse
|
9
|
Ismail TM, Prasanthkumar KP, Ebenezer C, Anjali BA, Solomon RV, Sajith PK. Hydrogen-Bond-Assisted Adsorption of Nitric Oxide on Various Metal-Loaded ZSM-5 Zeolites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10492-10502. [PMID: 35969660 DOI: 10.1021/acs.langmuir.2c01270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the characteristics of nitric oxide (NO) adsorption on metal-loaded zeolites is a prerequisite for developing efficient catalysts for NO abatement reactions. In this study, we probed the effect of the hydrogen bond that exists between adsorbed NO and Brønsted acid sites (BAS) in various metal-loaded ZSM-5 zeolites (M-ZSM-5, wherein M = Fe, Co, Ni, Cu, Zn, Pd, Ag, and Au) by using density functional theory calculations. The presence of a hydrogen bond has altered the NO adsorption energies significantly; appreciable stabilization via hydrogen bonding is noted for NO complexes of Zn, Fe, and Co, and reasonable stabilization is obtained for Ni and Cu complexes, whereas an anomalous effect of a hydrogen bond is identified in Ag, Pd, and Au species. Moderate weakening of the N-O bond in all NO-adsorbed complexes primarily due to a hydrogen bond has been realized in terms of Mayer bond order and quantum theory of atoms in molecules topological analyses; N-O bond activation follows the order Ag < Pd < Au < Ni < Cu < Co < Fe < Zn. We obtained a good correlation between hydrogen bond distance and molecular electrostatic potential at the O atom (VO) of NO adsorbed on BAS-free M-ZSM-5; which suggests that VO can be considered as a key descriptor to infer the strength of a hydrogen bond between the adsorbed NO and M-ZSM-5 with BAS. Finally, the energy decomposition analysis in combination with natural orbitals for chemical valence has provided the qualitative aspects of electron back-donation from the metal to the antibonding molecular orbital of NO; this back-donation is quite impressive in hydrogen-bond-assisted NO adsorption. We expect that the findings of this study will open up the possibility of the design of BAS-containing metal-loaded zeolites for the catalytic mitigation of NO.
Collapse
Affiliation(s)
- Thufail M Ismail
- Department of Chemistry, Farook College, Kozhikode 673632, Kerala, India
| | - Kavanal P Prasanthkumar
- Post Graduate and Research Department of Chemistry, Maharaja's College, Ernakulam 682011, Kerala, India
| | - Cheriyan Ebenezer
- Department of Chemistry, Madras Christian College (Autonomous), (Affiliated to the University of Madras), Chennai 600059, India
| | - Bai Amutha Anjali
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), (Affiliated to the University of Madras), Chennai 600059, India
| | - Pookkottu K Sajith
- Department of Chemistry, Farook College, Kozhikode 673632, Kerala, India
| |
Collapse
|
10
|
Kuyyilthodi FM, Ahammad N. K T, Ismail TM, Sajith PK. Theoretical investigation into the effect of water on the N2O decomposition reaction over Cu-ZSM-5 catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01883c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper exchanged zeolites are an admirable catalyst for the direct decomposition reaction of harmful N2O gas. However, the inhibition of the decomposition reaction in the presence of water vapor greatly...
Collapse
|
11
|
Brás EM, Fischer TL, Suhm MA. The Hydrates of TEMPO: Water Vibrations Reveal Radical Microsolvation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elisa M. Brás
- CQC Department of Chemistry University of Coimbra 3004-535 Coimbra Portugal
- Institut für Physikalische Chemie Georg-August-Universität Göttingen Tammannstr. 6 37077 Göttingen Germany
| | - Taija L. Fischer
- Institut für Physikalische Chemie Georg-August-Universität Göttingen Tammannstr. 6 37077 Göttingen Germany
| | - Martin A. Suhm
- Institut für Physikalische Chemie Georg-August-Universität Göttingen Tammannstr. 6 37077 Göttingen Germany
| |
Collapse
|
12
|
Brás EM, Fischer TL, Suhm MA. The Hydrates of TEMPO: Water Vibrations Reveal Radical Microsolvation. Angew Chem Int Ed Engl 2021; 60:19013-19017. [PMID: 34165885 PMCID: PMC8456822 DOI: 10.1002/anie.202104496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Indexed: 12/12/2022]
Abstract
An organic radical monohydrate complex is detected in vacuum isolation at low temperature by FTIR supersonic jet spectroscopy for the first time. It is shown to exhibit a rich conformational and vibrational coupling dynamics, which can be drastically reduced by appropriate isotope substitution. Its detection with a new gas recycling infrared spectrometer demonstrates the thermal metastability of the gaseous TEMPO radical even under humid gas conditions. Compared to its almost isoelectronic and isostructural, closed shell ketone analogue, the hydrogen bond of the solvating water is found to be less directional, but stronger and more strongly downshifting the bonded water OH stretch vibration. A second solvent water directs the first one into a metastable hydrogen bond position to solvate the nitrogen center and the first water at the same time.
Collapse
Affiliation(s)
- Elisa M. Brás
- CQCDepartment of ChemistryUniversity of Coimbra3004-535CoimbraPortugal
- Institut für Physikalische ChemieGeorg-August-Universität GöttingenTammannstr. 637077GöttingenGermany
| | - Taija L. Fischer
- Institut für Physikalische ChemieGeorg-August-Universität GöttingenTammannstr. 637077GöttingenGermany
| | - Martin A. Suhm
- Institut für Physikalische ChemieGeorg-August-Universität GöttingenTammannstr. 637077GöttingenGermany
| |
Collapse
|