1
|
Kaleeswarran P, Sakthi Priya T, Chen TW, Chen SM, Kokulnathan T, Arumugam A. Construction of a Copper Bismuthate/Graphene Nanocomposite for Electrochemical Detection of Catechol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10162-10172. [PMID: 35939572 DOI: 10.1021/acs.langmuir.2c01151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary metal oxides with carbon nanocomposites have received extensive attention as research hotspots in the electrochemistry field owing to their tunable properties and superior stability. This work illustrates the development of a facile sonochemical strategy for the synthesis of a copper bismuthate/graphene (GR) nanocomposite-modified screen-printed carbon electrode (CBO/GR/SPCE) for the electrochemical detection of catechol (CT). The formation of an as-prepared CBO/GR nanocomposite was comprehensively characterized. The electrochemical behavior of the CBO/GR/SPCE toward CT was investigated by voltammetry and amperometry techniques. The fabricated CBO/GR/SPCE manifests an excellent electrocatalytic performance toward CT with a lower peak potential and a higher current value compared to those of CBO/SPCE, GR/SPCE, and bare SPCE. It is attributed to enhanced electro-catalytic activity, synergetic effects, and good active sites of the CBO/GR nanocomposite. Under the electrochemical condition, the CBO/GR/SPCE displayed a wide linear sensing range, trace-level detection limit, acceptable sensitivity, and excellent selectivity. Furthermore, our proposed CBO/GR electrode was employed successfully for CT detection in water samples.
Collapse
Affiliation(s)
- Periyannan Kaleeswarran
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
- Department of Botany, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Thangavelu Sakthi Priya
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Thangavelu Kokulnathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ayyakannu Arumugam
- Department of Botany, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|
2
|
Yuan R, Zhao L, Wei Y, Chen Y, Tang M, Xue Z, Wang A, Zhang J. Substituent effects of symmetric cobalt porphyrins using graphene oxide as substrate on catalytic oxygen reduction reactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Khatri R, Puri NK. Electrochemical Studies of Biofunctionalized MoS2 Matrix for Highly Stable Immobilization of antibodies and Detection of Lung Cancer Protein Biomarker. NEW J CHEM 2022. [DOI: 10.1039/d2nj00540a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To address the issue of lack of stable immobilization of antibodies on the biosensing matrix for repeated cycles of measurement, chitosan (CS) bio-functionalized MoS2 is prepared to serve as a...
Collapse
|
4
|
Fu L, Fang Y, Yang R, Guan Z, Wei Z, Shan N, Liu F, Zhao Y, Humphrey MG, Zhang C. Enhanced nonlinear optical properties of a π-conjugated porphyrin dimer–graphene nanocomposite. NEW J CHEM 2022. [DOI: 10.1039/d2nj00753c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A more conjugated nanocomposite and a potential NLO candidate with a strong intrasystem interaction were constructed using a rarely mentioned porphyrin dimer and graphene.
Collapse
Affiliation(s)
- Lulu Fu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yan Fang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Yang
- United World College, Changshu, 215500, China
| | - Zihao Guan
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiyuan Wei
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Naying Shan
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fang Liu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Zhao
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mark G. Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chi Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
5
|
Jiang X, Wang M, Hou L, Lin T. An ordered one-step colorimetric sensor for the selective determination of catechol based on the polyacrylic acid-coated cerium oxide with laccase-like activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj04149a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A sensitive colorimetric sensor was constructed for an ordered and one-step determination of catechol based on PAA-CeO2 with a significant laccase-like activity.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Min Wang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Li Hou
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
6
|
Li Y, Liu J, Chen X, Wu J, Li N, He W, Feng Y. Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58508-58521. [PMID: 34871496 DOI: 10.1021/acsami.1c16583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An extracellular electron transfer (EET) process between an electroactive biofilm and an electrode is a crucial step for the performance of microbial fuel cells (MFCs), which is highly related to the enrichment of exoelectrogens and the electrocatalytic activity of the electrode. Herein, an efficient N- and Fe-abundant carbon cloth (CC) electrode with the comodification of iron porphyrin (FePor) and polyquaternium-7 (PQ) was synthesized using a facile solvent evaporation and immersion method and developed as an anode (named FePor-PQ) in MFCs. The surface structural characterizations confirmed the successful introduction of N and Fe atoms, whereas FePor-PQ achieved the N content of 9.59 at %, which may offer various active sites for EET. The introduction of PQ contributed to improving the surface hydrophilicity, providing the composite electrode good biocompatibility for bacterial attachment and colonization as well as substrate diffusion. Based on the advantages, the MFC with the FePor-PQ anode produced a maximum power density of 2165.7 mW m-2, strikingly higher than those of CC (1124.0 mW m-2), PQ (1668.8 mW m-2), and FePor (1978.9 mW m-2). Furthermore, with the EET mediated by the binding of flavins and c-type cytochromes on the outer membrane was enhanced prominently, the typical exoelectrogen Geobacter was enriched up to 55.84% in the FePor-PQ anode biofilm. This work reveals a synergistic effect from heteroatom coating and surface properties tailoring to boost both the EET efficiency and exoelectrogen enrichment for enhancing MFC performance, which also provides valuable insights for designing electrodes in other bio-electrochemical systems.
Collapse
Affiliation(s)
- Yunfei Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xuepeng Chen
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jingxuan Wu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| |
Collapse
|