1
|
Zhou D, Quan J, Zhang H, Zheng H, Xu Z, Wang F, Hu L, Liu J, Tong Y, Chen L. Small-Molecule Electron Transport Layer with Siloxane-Functionalized Side Chains for Nonfullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54063-54072. [PMID: 36442138 DOI: 10.1021/acsami.2c17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Active layer materials with silicone side chains have been broadly reported to have excellent long-term stability in harsh environments. However, the application of conjugated materials with silicone side chains in electron transport layers (ETLs) has rarely been reported. In this research, we synthesized for the first time a siloxane-modified perylene-diimide derivative (PDI-OSi) consisting of a side-chain substituent of siloxane and a conjugated group of perylene-diimide (PDI). The inserted siloxane functional groups not only can strengthen the light transmittance of PDI-OSi but also can remarkably expand its solubility and improve the film-forming ability and air stability of the material. Second, introducing siloxane-containing side chains can dramatically lower the work function and interfacial barrier of the electrode, thereby achieving a favorable ohmic contact. In addition, the moderate surface energy of siloxane functional groups makes PDI-OSi hydrophobic, which is conducive to forming excellent miscibility with hydrophobic active layers to promote charge transfer. When PDI-OSi is used as an ETL in organic solar cells (OSCs), operative exciton dissociation and more favorable surface morphology enable OSCs to realize a power conversion efficiency (PCE) of 13.99%. These results indicate that side-chain engineering with siloxane pendants is a facile strategy for constructing efficient OSCs.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Jianwei Quan
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Hehui Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Haolan Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Zhentian Xu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, China
| | - Fang Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Lin Hu
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Jiabin Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Lie Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Chen G, Wu H, Feng C, Deng Z, Li Z, Nie M, He B, Hao H, Li X, He Z. Efficient Cathode Buffer Material Based on Dibenzothiophene- S, S-dioxide for Both Conventional and Inverted Organic Solar Cells. ACS OMEGA 2022; 7:38613-38621. [PMID: 36340129 PMCID: PMC9631918 DOI: 10.1021/acsomega.2c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A novel conjugated molecule (PBSON) based on a main chain composed of bis(dibenzothiophene-S,S-dioxide) fused cyclopentadiene and side chains containing amino groups is presented as an efficient cathode buffer material (CBM) for organic solar cells (OSCs). PBSON showed a deep highest occupied molecular orbital (HOMO) energy level of -6.01 eV, which was beneficial for building hole-blocking layers at the cathodes of OSCs. The energy bandgap of PBSON reached 3.17 eV, implying high transmittance to visible and near-infrared light, which meant PBSON should be suitable for the applications to most inverted OSCs. The scanning Kelvin probe microscopy measurement and theoretical calculation on the PBSON/cathode interfacial interaction proved the excellent work function-regulating abilities of PBSON for various cathodes, suggesting that PBSON could promote the formation of Ohmic contacts at the cathodes and thus improve the transport and collection of electron carriers for OSCs. The characterization of electron-only devices demonstrated the good electron-transporting performance of PBSON at the cathodes. In the conventional OSCs, it was hinted that PBSON might restrain the infiltrations of evaporated cathode atoms into the active films, consequently reducing the reverse leakage currents. As a result, PBSON was able to boost the power conversion efficiencies (PCEs) by 58.2 and 56.4% for both conventional and inverted OSCs of the typical PTB7:PC71BM system, respectively, as compared to the unadorned devices. In terms of the classical PTB7-Th:PC71BM system, substantial increases in PCEs could also be found with PBSON interlayers, which were 54.7 and 59.8% for the conventional device and inverted device, respectively. Therefore, PBSON is a kind of promising CBM for realizing both conventional and inverted OSCs of high performance.
Collapse
Affiliation(s)
- Guiting Chen
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Hongli Wu
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South
China University of Technology, Guangzhou 510640, China
| | - Chuang Feng
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South
China University of Technology, Guangzhou 510640, China
| | - Zhikai Deng
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Zhuyang Li
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Mingxin Nie
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Baitian He
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Hongqing Hao
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Xin Li
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Zhicai He
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South
China University of Technology, Guangzhou 510640, China
| |
Collapse
|