1
|
Wang Y, Wang F, Liu W, Geng Y, Shi Y, Tian Y, Zhang B, Luo Y, Sun X. New drug discovery and development from natural products: Advances and strategies. Pharmacol Ther 2024; 264:108752. [PMID: 39557343 DOI: 10.1016/j.pharmthera.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Natural products (NPs) have a long history as sources for drug discovery, more than half of approved drugs are related to NPs, which also exhibit multifaceted advantages in the clinical treatment of complex diseases. However, bioactivity screening of NPs, target identification, and design optimization require continuously improved strategies, the complexity of drug mechanism of action and the limitations of technological strategies pose numerous challenges to the development of new drugs. This review begins with an overview of bioactivity- and target-based drug development patterns for NPs, advances in NP screening and derivatization, and the advantages and problems of major targets such as genes and proteins. Then, target-based drugs as well as identification and validation methods are further discussed to elucidate their mechanism of action. Subsequently, the current status and development trend of the application of traditional and emerging technologies in drug discovery and development of NPs are systematically described. Finally, the collaborative strategy of multi-technology integration and multi-disciplinary intersection is emphasized for the challenges faced in the identification, optimization, activity evaluation, and clinical application of NPs. It is hoped to provide a systematic overview and inspiration for exploring new drugs from natural resources in the future.
Collapse
Affiliation(s)
- Yixin Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yahong Shi
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
2
|
Li H, Yang R, Xie F, Xie T, Tang L, Zhou H, Ding Z. Multioxidized polyketides from an endophytic Penicillium sp. YUD17006 associated with Gastrodia elata. Chin J Nat Med 2024; 22:1057-1064. [PMID: 39510638 DOI: 10.1016/s1875-5364(24)60724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 11/15/2024]
Abstract
Three novel, highly oxygenated polyketides, multioketides A-C (1-3), and three previously described multioxidized aromatic polyketides (4-6), were isolated from an endophytic Penicillium sp. YUD17006 associated with Gastrodia elata. Their chemical structures were elucidated using extensive spectroscopic data, electronic circular dichroism calculations, and single X-ray diffraction analysis. All metabolites were characterized by a typical α,β-unsaturated ketone fragment and exhibited a high degree of oxidation. Multioketides A and B were identified as a pair of epimers featuring a rare dihydroisobenzofuranone core. Multioketide C possessed a novel 5/6/6/6 heterotetracyclic chemical architecture with unusual 1,4-dioxin functionalities. Plausible biosynthetic pathways for 1-6 were proposed. Additionally, compound 3 demonstrated weak inhibitory activities against both acetylcholinesterase and protein tyrosine phosphatase 1B.
Collapse
Affiliation(s)
- Hongtao Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ruining Yang
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Fei Xie
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Tianpeng Xie
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Linhuan Tang
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Hao Zhou
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Zhongtao Ding
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
3
|
Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep 2024; 41:1543-1578. [PMID: 38912779 PMCID: PMC11484176 DOI: 10.1039/d4np00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Time span in literature: 1985-early 2024Natural products play a key role in drug discovery, both as a direct source of drugs and as a starting point for the development of synthetic compounds. Most natural products are not suitable to be used as drugs without further modification due to insufficient activity or poor pharmacokinetic properties. Choosing what modifications to make requires an understanding of the compound's structure-activity relationships. Use of structure-activity relationships is commonplace and essential in medicinal chemistry campaigns applied to human-designed synthetic compounds. Structure-activity relationships have also been used to improve the properties of natural products, but several challenges still limit these efforts. Here, we review methods for studying the structure-activity relationships of natural products and their limitations. Specifically, we will discuss how synthesis, including total synthesis, late-stage derivatization, chemoenzymatic synthetic pathways, and engineering and genome mining of biosynthetic pathways can be used to produce natural product analogs and discuss the challenges of each of these approaches. Finally, we will discuss computational methods including machine learning methods for analyzing the relationship between biosynthetic genes and product activity, computer aided drug design techniques, and interpretable artificial intelligence approaches towards elucidating structure-activity relationships from models trained to predict bioactivity from chemical structure. Our focus will be on these latter topics as their applications for natural products have not been extensively reviewed. We suggest that these methods are all complementary to each other, and that only collaborative efforts using a combination of these techniques will result in a full understanding of the structure-activity relationships of natural products.
Collapse
Affiliation(s)
| | | | - Caitlin M Butt
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Gurram DP, Marri G, Jothimani N, Chen YR, Lin W. Diversity-oriented synthesis of chromone inden-1-one-fused cyclopentadienylides and C-acylated chromone adducts via allylic phosphorus ylides. Chem Commun (Camb) 2024; 60:9817-9820. [PMID: 39171397 DOI: 10.1039/d4cc03210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
An organophosphine-controlled diversity-oriented synthesis of chromone inden-1-one-fused cyclopentadienylides and C-acylated 2-((chromone-3-yl)methylene)-indandiones is reported. Key attributes of the methodology are the in situ generation of an allylic P-ylide and subsequent regio- and chemoselective intramolecular cyclization reactions that preferentially result in the aforementioned chromone adducts.
Collapse
Affiliation(s)
- Durga Prasad Gurram
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Gangababu Marri
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Naveen Jothimani
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| |
Collapse
|
5
|
Mikan CP, Watson JO, Walton R, Waddell PG, Knowles JP. Stereoselective Access to Diverse Alkaloid-Like Scaffolds via an Oxidation/Double-Mannich Reaction Sequence. Org Lett 2024; 26:5549-5553. [PMID: 38905202 PMCID: PMC11232018 DOI: 10.1021/acs.orglett.4c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Sequential oxidative cleavage and double-Mannich reactions enable the stereoselective conversion of simple norbornenes into complex alkaloid-like structures. The products undergo a wide range of derivatization reactions, including regioselective enol triflate formation/cross-coupling sequences and highly efficient conversion to an unusual tricyclic 8,5,5-fused lactam. Overall, the process represents a formal one-atom aza-ring expansion with concomitant bridging annulation, making it of interest for the broader derivatization of alkene feedstocks.
Collapse
Affiliation(s)
- Charles P Mikan
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Joseph O Watson
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Ryan Walton
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jonathan P Knowles
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
6
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
7
|
Defant A, Carloni G, Innocenti N, Trobec T, Frangež R, Sepčić K, Mancini I. Structural Insights into the Marine Alkaloid Discorhabdin G as a Scaffold towards New Acetylcholinesterase Inhibitors. Mar Drugs 2024; 22:173. [PMID: 38667790 PMCID: PMC11051419 DOI: 10.3390/md22040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, Antarctic Latrunculia sponge-derived discorhabdin G was considered a hit for developing potential lead compounds acting as cholinesterase inhibitors. The hypothesis on the pharmacophore moiety suggested through molecular docking allowed us to simplify the structure of the metabolite. ADME prediction and drug-likeness consideration provided valuable support in selecting 5-methyl-2H-benzo[h]imidazo[1,5,4-de]quinoxalin-7(3H)-one as a candidate molecule. It was synthesized in a four-step sequence starting from 2,3-dichloronaphthalene-1,4-dione and evaluated as an inhibitor of electric eel acetylcholinesterase (eeAChE), human recombinant AChE (hAChE), and horse serum butyrylcholinesterase (BChE), together with other analogs obtained by the same synthesis. The candidate molecule showed a slightly lower inhibitory potential against eeAChE but better inhibitory activity against hAChE than discorhabdin G, with a higher selectivity for AChEs than for BChE. It acted as a reversible competitive inhibitor, as previously observed for the natural alkaloid. The findings from the in vitro assay were relatively consistent with the data available from the AutoDock Vina and Protein-Ligand ANTSystem (PLANTS) calculations.
Collapse
Affiliation(s)
- Andrea Defant
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.C.); (N.I.)
| | - Giacomo Carloni
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.C.); (N.I.)
- Unit of Structural Microbiology, Pasteur Institute, CNRS, University of Paris City, 75015 Paris, France
| | - Nicole Innocenti
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.C.); (N.I.)
| | - Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (T.T.); (R.F.)
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (T.T.); (R.F.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Ines Mancini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.C.); (N.I.)
| |
Collapse
|
8
|
Shenvi RA. Natural Product Synthesis in the 21st Century: Beyond the Mountain Top. ACS CENTRAL SCIENCE 2024; 10:519-528. [PMID: 38559299 PMCID: PMC10979479 DOI: 10.1021/acscentsci.3c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
Research into natural products emerged from humanity's curiosity about the nature of matter and its role in the materia medica of diverse civilizations. Plants and fungi, in particular, supplied materials that altered behavior, perception, and well-being profoundly. Many active principles remain well-known today: strychnine, morphine, psilocybin, ephedrine. The potential to circumvent the constraints of natural supply and explore the properties of these materials led to the field of natural product synthesis. This research delivered new molecules with new properties, but also led to fundamental insights into the chemistry of the nonmetal elements H, C, N, O, P, S, Se, and their combinations, i.e., organic chemistry. It also led to a potent culture focused on bigger molecules and races to the finish line, perhaps at the expense of actionable next steps. About 20 years ago, the field began to contract in the United States. Research that focused solely on chemical reaction development, especially catalysis, filled the void. After all, new reactions and mechanistic insight could be immediately implemented by the chemistry community, so it became hard to justify the lengthy procurement of a complex molecule that sat in the freezer unused. This shift coincided with a divestment of natural product portfolios by pharmaceutical companies and an emphasis in academic organic chemistry on applications-driven research, perhaps at the expense of more fundamental science. However, as bioassays and the tools of chemical biology become widespread, synthesis finds a new and powerful ally that allows us to better deliver on the premise of the field. And the hard-won insights of complex synthesis can be better encoded digitally, mined by data science, and applied to new challenges, as chemists perturb and even surpass the properties of complex natural products. The 21st century promises powerful developments, both in fundamental organic chemistry and at the interface of synthesis and biology, if the community of scientists fosters its growth. This essay tries to contextualize natural product synthesis for a broad audience, looks ahead to its transformation in the coming years, and expects the future to be bright.
Collapse
Affiliation(s)
- Ryan A. Shenvi
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Recent developments in the total synthesis of natural products using the Ugi multicomponent reactions as the key strategy. Org Biomol Chem 2024; 22:429-465. [PMID: 38126459 DOI: 10.1039/d3ob01837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The total syntheses of selected natural products using different versions of the Ugi multicomponent reaction is reviewed on a case-by-case basis. The revision covers the period 2008-2023 and includes detailed descriptions of the synthetic sequences, the use of state-of-the-art chemical reagents and strategies, as well as the advantages and limitations of the transformation and some remedial solutions. Relevant data on the isolation and bioactivity of the different natural targets are also briefly provided. The examples clearly evidence the strategic importance of this transformation and its key role in the modern natural products synthetic chemistry toolbox. This methodology proved to be a valuable means for easily building molecular complexity and efficiently delivering step-economic syntheses even of intricate structures, with a promising future.
Collapse
Affiliation(s)
- Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| |
Collapse
|
10
|
Gong Z, Zhao Y, Xu B, Yang Z, Ren B, Yang H, Zeng C, Chen R, Xu YJ, Li Q. Identification of novel 3-aryl-1-aminoisoquinolines-based KRAS G12C inhibitors: Rational drug design and expedient construction by CH functionalization/annulation. Bioorg Chem 2024; 142:106954. [PMID: 37948926 DOI: 10.1016/j.bioorg.2023.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Developing a synthetic methodology to expediently construct a specific drug scaffold with the desired biological activity remains challenging. Herein, we describe a work on rational application of a synthetic methodology in the synthesis of KRASG12C inhibitors. Novel KRASG12C inhibitors were initially designed with 1-amino-3-aryl isoquinoline scaffold using structure-based drug design strategy. A ruthenium-catalyzed direct monoCH functionalization/annulation cascade reaction of amidines and sulfoxonium ylides was then developed with high versatility of substrates and good tolerance for polar functional groups. By using this reaction, the target compounds 1-amino-3-aryl isoquinolines were facilely prepared. Further in vitro tests led to identification of two novel lead compounds with KRASG12C inhibitory activity.
Collapse
Affiliation(s)
- Zirong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yu Zhao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Buyi Xu
- National Anti-drug Laboratory Sichuan Regional Center, Chengdu, Sichuan, 610206, China
| | - Zhou Yang
- National Anti-drug Laboratory Sichuan Regional Center, Chengdu, Sichuan, 610206, China
| | - Boquan Ren
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Han Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Chengfu Zeng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Renqiang Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Qing Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| |
Collapse
|
11
|
Fernandes RA. Deciphering the quest in the divergent total synthesis of natural products. Chem Commun (Camb) 2023; 59:12205-12230. [PMID: 37746673 DOI: 10.1039/d3cc03564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The divergent synthesis of natural products is rapidly developing towards achieving the goal of efficiency and economy in total synthesis. However, presently, the sustainable development of the synthesis of natural products does not permit the linear synthesis of a single target. In this case, divergent total synthesis is based on the identification of an advanced intermediate with structural features that can be mapped in more than two molecules. However, the identification of this intermediate and its scalable synthesis in enantiopure form are challenging. Herein, we present the details of the ingenious efforts by researchers in the last six years toward the divergent synthesis of two to as many as eight natural products initially via a single route, and then diverging from a common intermediate and further branching out toward several natural products. The planning and strategies adopted can serve as guidelines for the future development of efficient divergent routes aimed at achieving higher efficiency toward multiple targets, causing divergent synthesis to become an accepted common practice.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
12
|
Angyal P, Hegedüs K, Mészáros BB, Daru J, Dudás Á, Galambos AR, Essmat N, Al-Khrasani M, Varga S, Soós T. Total Synthesis and Structural Plasticity of Kratom Pseudoindoxyl Metabolites. Angew Chem Int Ed Engl 2023; 62:e202303700. [PMID: 37332089 DOI: 10.1002/anie.202303700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Mitragynine pseudoindoxyl, a kratom metabolite, has attracted increasing attention due to its favorable side effect profile as compared to conventional opioids. Herein, we describe the first enantioselective and scalable total synthesis of this natural product and its epimeric congener, speciogynine pseudoindoxyl. The characteristic spiro-5-5-6-tricyclic system of these alkaloids was formed through a protecting-group-free cascade relay process in which oxidized tryptamine and secologanin analogues were used. Furthermore, we discovered that mitragynine pseudoindoxyl acts not as a single molecular entity but as a dynamic ensemble of stereoisomers in protic environments; thus, it exhibits structural plasticity in biological systems. Accordingly, these synthetic, structural, and biological studies provide a basis for the planned design of mitragynine pseudoindoxyl analogues, which can guide the development of next-generation analgesics.
Collapse
Affiliation(s)
- Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Kristóf Hegedüs
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Bence Balázs Mészáros
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - János Daru
- Department of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ádám Dudás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
13
|
Roncero AM, Tobal IE, Moro RF, Diez D, Marcos IS. Halimanes and cancer: ent-halimic acid as a starting material for the synthesis of antitumor drugs. Front Chem 2023; 11:1225355. [PMID: 37674527 PMCID: PMC10477373 DOI: 10.3389/fchem.2023.1225355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 09/08/2023] Open
Abstract
The development of new anti-cancer agents is an urgent necessity nowadays, as it is one of the major causes of mortality worldwide. Many drugs currently used are derived from natural products. Halimanes are a class of bicyclic diterpenoids present in various plants and microorganisms. Many of them exhibit biological activities such as antitumor, antimicrobial, or anti-inflammatory. Among them, ent-halimic acid is an easily accessible compound, in large quantities, from the ethyl acetate extract of the plant Halimium viscosum, and it has been used as a starting material in a number of bioactive molecules. In this work, we review all the natural halimanes with antitumor and related activities until date as well as the synthesis of antitumor compounds using ent-halimic acid as a starting material.
Collapse
Affiliation(s)
| | | | | | | | - Isidro S. Marcos
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Arnold A, Alexander J, Liu G, Stokes JM. Applications of machine learning in microbial natural product drug discovery. Expert Opin Drug Discov 2023; 18:1259-1272. [PMID: 37651150 DOI: 10.1080/17460441.2023.2251400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Natural products (NPs) are a desirable source of new therapeutics due to their structural diversity and evolutionarily optimized bioactivities. NPs and their derivatives account for roughly 70% of approved pharmaceuticals. However, the rate at which novel NPs are discovered has decreased. To accelerate the microbial NP discovery process, machine learning (ML) is being applied to numerous areas of NP discovery and development. AREAS COVERED This review explores the utility of ML at various phases of the microbial NP drug discovery pipeline, discussing concrete examples throughout each major phase: genome mining, dereplication, and biological target prediction. Moreover, the authors discuss how ML approaches can be applied to semi-synthetic approaches to drug discovery. EXPERT OPINION Despite the important role that microbial NPs play in the development of novel drugs, their discovery has declined due to challenges associated with the conventional discovery process. ML is positioned to overcome these limitations given its ability to model complex datasets and generalize to novel chemical and sequence space. Unsurprisingly, ML comes with its own limitations that must be considered for its successful implementation. The authors stress the importance of continuing to build high quality and open access NP datasets to further increase the utility of ML in NP discovery.
Collapse
Affiliation(s)
- Autumn Arnold
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, OntarioCanada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton,Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario Canada
| | - Jeremie Alexander
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, OntarioCanada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton,Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario Canada
| | - Gary Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, OntarioCanada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton,Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario Canada
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, OntarioCanada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton,Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario Canada
| |
Collapse
|
15
|
Dar AA, Abrol V, Singh N, Gashash EA, Dar SA. Recent bioanalytical methods for the isolation of bioactive natural products from genus Codonopsis. PHYTOCHEMICAL ANALYSIS : PCA 2023. [PMID: 37316180 DOI: 10.1002/pca.3253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Chromatography and spectroscopy are nowadays well-validated techniques allowing to isolate and purify different class of natural products from the genus Codonopsis. Several categories of phytochemicals with drug like properties have been selectively extracted, isolated, characterised by this methodology. OBJECTIVES The present review aims to provide up-to-date and comprehensive information on the chromatography, phytochemistry and pharmacology of natural products of Codonopsis with an emphasis on the search for natural products having various biological activities and the semi-synthetic derivatives of bioactive ones and to highlight current gaps in knowledge. MATERIALS AND METHODS A literature search was performed in the SciFinder Scholar, PubMed, Medline, and Scopus databases. RESULTS During the period covered in this review, several classes of compounds have been reported from genus Codonopsis. Codonopsis pilosula and Codonopsis lanceolata are the most popular in the genus especially as per phytochemical and bioactive studies. Phytochemical investigation demonstrates that Codonopsis species contain mainly xanthones, flavonoids, alkaloids, polyacetylenes, phenylpropanoids, triterpenoids and polysaccharides, which contribute to numerous bioactivities. The major bioactive compounds isolated were used for semi-synthetic modification to increase the chance to discover lead compound. CONCLUSIONS It can be concluded that genus Codonopsis has been used as traditional medicines and food materials around the world over years due to chemical constituents with diverse structural types, exhibiting extensive pharmacological activities in immune system, blood system, cardiovascular system, central nervous system, digestive system, and so forth, with almost no obvious toxicity and side effect. Therefore, Codonopsis can be used as a promising ethnopharmacological plant source.
Collapse
Affiliation(s)
- Alamgir A Dar
- Research Centre for Residue and Quality Analysis, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, India
| | - Vidushi Abrol
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Nasseb Singh
- Synthetic Organic Chemistry Laboratory, Faculty of Sciences, Shri Mata Vaishno Devi University, Katra, India
| | - Ebtesam A Gashash
- Department of Chemistry, Faculty of Arts and Science in Balijurashi, Al-Baha University, Baha, Saudi Arabia
| | - Showket A Dar
- Division of Social and Basic Science, Faculty of Forestry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Ganderbal, India
| |
Collapse
|
16
|
Nzimande B, Makhwitine JP, Mkhwanazi NP, Ndlovu SI. Developments in Exploring Fungal Secondary Metabolites as Antiviral Compounds and Advances in HIV-1 Inhibitor Screening Assays. Viruses 2023; 15:v15051039. [PMID: 37243125 DOI: 10.3390/v15051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of drug-resistant Human Immunodeficiency Virus-1 strains against anti-HIV therapies in the clinical pipeline, and the persistence of HIV in cellular reservoirs remains a significant concern. Therefore, there is a continuous need to discover and develop new, safer, and effective drugs targeting novel sites to combat HIV-1. The fungal species are gaining increasing attention as alternative sources of anti-HIV compounds or immunomodulators that can escape the current barriers to cure. Despite the potential of the fungal kingdom as a source for diverse chemistries that can yield novel HIV therapies, there are few comprehensive reports on the progress made thus far in the search for fungal species with the capacity to produce anti-HIV compounds. This review provides insights into the recent research developments on natural products produced by fungal species, particularly fungal endophytes exhibiting immunomodulatory or anti-HIV activities. In this study, we first explore currently existing therapies for various HIV-1 target sites. Then we assess the various activity assays developed for gauging antiviral activity production from microbial sources since they are crucial in the early screening phases for discovering novel anti-HIV compounds. Finally, we explore fungal secondary metabolites compounds that have been characterized at the structural level and demonstrate their potential as inhibitors of various HIV-1 target sites.
Collapse
Affiliation(s)
- Bruce Nzimande
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - John P Makhwitine
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nompumelelo P Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Sizwe I Ndlovu
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
17
|
Xu L, Zou Y, Wu K, Han R, Huang Y, Yi X. Polydatin-based natural product as an activatable molecular sensor toward viscosity detection in liquid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
18
|
Krishna RB, Moncy SH, Mohan C. Arynes as synthetic linchpins towards the construction of diversely functionalized natural product skeletons. Org Biomol Chem 2023; 21:479-488. [PMID: 36514934 DOI: 10.1039/d2ob01975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arynes are a privileged class of reactive intermediates in synthetic organic chemistry, and their unusual reactivities have been the subject of engrossing research interest. Recently, there are many reports on novel aryne-based synthetic innovations as a linchpin approach to accomplish the total synthesis of structurally diverse natural products or their derivatives in a racemic and enantiopure fashion. This review provides an overview of the literature on synthetic strategies, employing arynes as crucial intermediates to construct architecturally intriguing bioactive natural products/derivatives in a period of 2019 to 2022. This study highlights the need to investigate the effective synthesis and search for new biological uses of highly functionalized natural product skeletons.
Collapse
Affiliation(s)
- R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Shirin Hanna Moncy
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India.
| |
Collapse
|
19
|
Berestetskiy A. Modern Approaches for the Development of New Herbicides Based on Natural Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:234. [PMID: 36678947 PMCID: PMC9864389 DOI: 10.3390/plants12020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 05/12/2023]
Abstract
Weeds are a permanent component of anthropogenic ecosystems. They require strict control to avoid the accumulation of their long-lasting seeds in the soil. With high crop infestation, many elements of crop production technologies (fertilization, productive varieties, growth stimulators, etc.) turn out to be practically meaningless due to high yield losses. Intensive use of chemical herbicides (CHs) has led to undesirable consequences: contamination of soil and wastewater, accumulation of their residues in the crop, and the emergence of CH-resistant populations of weeds. In this regard, the development of environmentally friendly CHs with new mechanisms of action is relevant. The natural phytotoxins of plant or microbial origin may be explored directly in herbicidal formulations (biorational CHs) or indirectly as scaffolds for nature-derived CHs. This review considers (1) the main current trends in the development of CHs that may be important for the enhancement of biorational herbicides; (2) the advances in the development and practical application of natural compounds for weed control; (3) the use of phytotoxins as prototypes of synthetic herbicides. Some modern approaches, such as computational methods of virtual screening and design of herbicidal molecules, development of modern formulations, and determination of molecular targets, are stressed as crucial to make the exploration of natural compounds more effective.
Collapse
Affiliation(s)
- Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| |
Collapse
|
20
|
Xu L, Kang M, Xiong F, Sui Y, Huang Y. Cinnamaldehyde‐based Natural Product as Viscosity‐Sensitive Sensor toward Liquid Safety Inspection. ChemistrySelect 2022. [DOI: 10.1002/slct.202203458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lingfeng Xu
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province Jinggangshan University Ji'an Jiangxi 343009 China
- State Key Laboratory of Luminescent Materials & Devices South China University of Technology Guangzhou Guangdong 510640 China
| | - Minqing Kang
- School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Fangzhi Xiong
- School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yan Sui
- School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yanrong Huang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
21
|
Microwave-Aided Reactions of Aniline Derivatives with Formic Acid: Inquiry-Based Learning Experiments. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2022. [DOI: 10.2478/cdem-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
The synthesis of amides belongs to traditional experimental tasks not only in organic chemistry exercises at universities but also at chemically focused secondary schools or in special practices at general high schools. An example of such a synthesis may be the preparation of acetanilide via reaction of aniline with acetic acid or acetic anhydride. However, both of these reactions are associated with a rather long reaction time and certain hazards that limit their straightforward use in pedagogical practice. Conveniently, the reaction of aniline with acetic acid may be significantly optimised if it is performed under solvent-free conditions in the presence of microwaves, which reduces considerably the reaction time and provides very good yield, compared to traditional heating by a heating nest. In this study, the main pedagogical aim of the experimental design is elucidation of the influence of the structure of the amines on the course of the reaction with formic acid through inquiry-based learning. Specifically, the proposed experiments consist in investigation of the chemical yield achieved in microwave assisted reactions of aniline and its derivatives with formic acid in such a way that is adequate for constructive learning of undergraduate chemistry students. The selected series of amines involves aniline, 4-methoxyaniline, 4-chloroaniline, and 4-nitroaniline. In accordance with the chemical reactivity principles, students gradually realise that the influence of the substituent is reflected in the reaction yield, which grows in the following order: N-(4-nitrophenyl)formamide ˂ N-(4-chlorophenyl)formamide ˂ N-phenylformamide ˂ N-(4-methoxyphenyl)formamide. Therefore, the results of the experiments enable students to discover that stronger basicity of the amine increases the yield of the amide. In order to deepen the students’ chemical knowledge and skills, the concept of the experiments was transformed to support inquiry-based student learning. The proposed experiments are intended for experimental learning in universities educating future chemistry teachers, but they may be also utilised in the form of workshops for students at secondary schools of a general educational nature.
Collapse
|
22
|
Gu J, Peng RK, Guo CL, Zhang M, Yang J, Yan X, Zhou Q, Li H, Wang N, Zhu J, Ouyang Q. Construction of a synthetic methodology-based library and its application in identifying a GIT/PIX protein-protein interaction inhibitor. Nat Commun 2022; 13:7176. [PMID: 36418900 PMCID: PMC9684509 DOI: 10.1038/s41467-022-34598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the flourishing of synthetic methodology studies has provided concise access to numerous molecules with new chemical space. These compounds form a large library with unique scaffolds, but their application in hit discovery is not systematically evaluated. In this work, we establish a synthetic methodology-based compound library (SMBL), integrated with compounds obtained from our synthetic researches, as well as their virtual derivatives in significantly larger scale. We screen the library and identify small-molecule inhibitors to interrupt the protein-protein interaction (PPI) of GIT1/β-Pix complex, an unrevealed target involved in gastric cancer metastasis. The inhibitor 14-5-18 with a spiro[bicyclo[2.2.1]heptane-2,3'-indolin]-2'-one scaffold, considerably retards gastric cancer metastasis in vitro and in vivo. Since the PPI targets are considered undruggable as they are hard to target, the successful application illustrates the structural specificity of SMBL, demonstrating its potential to be utilized as compound source for more challenging targets.
Collapse
Affiliation(s)
- Jing Gu
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Rui-Kun Peng
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Chun-Ling Guo
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Meng Zhang
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Xiao Yan
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Qian Zhou
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Hongwei Li
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Na Wang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Jinwei Zhu
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Ouyang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| |
Collapse
|
23
|
Vanable EP, Habgood LG, Patrone JD. Current Progress in the Chemoenzymatic Synthesis of Natural Products. Molecules 2022; 27:molecules27196373. [PMID: 36234909 PMCID: PMC9571504 DOI: 10.3390/molecules27196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products, with their array of structural complexity, diversity, and biological activity, have inspired generations of chemists and driven the advancement of techniques in their total syntheses. The field of natural product synthesis continuously evolves through the development of methodologies to improve stereoselectivity, yield, scalability, substrate scope, late-stage functionalization, and/or enable novel reactions. One of the more interesting and unique techniques to emerge in the last thirty years is the use of chemoenzymatic reactions in the synthesis of natural products. This review highlights some of the recent examples and progress in the chemoenzymatic synthesis of natural products from 2019–2022.
Collapse
Affiliation(s)
- Evan P. Vanable
- Department of Chemistry and Biochemistry, Elmhurst University, Elmhurst, IL 60126, USA
| | - Laurel G. Habgood
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
| | - James D. Patrone
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
- Correspondence:
| |
Collapse
|
24
|
Truax NJ, Ayinde S, Liu JO, Romo D. Total Synthesis of Rameswaralide Utilizing a Pharmacophore-Directed Retrosynthetic Strategy. J Am Chem Soc 2022; 144:18575-18585. [PMID: 36166374 DOI: 10.1021/jacs.2c08245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A pharmacophore-directed retrosynthetic strategy was applied to the first total synthesis of the cembranoid rameswaralide in order to simultaneously achieve a total synthesis while also developing a structure-activity relationship profile throughout the synthetic effort. The synthesis utilized a Diels-Alder lactonization process, including a rare kinetic resolution to demonstrate the potential of this strategy for an enantioselective synthesis providing both the 5,5,6- and, through a ring expansion, 5,5,7-tricyclic ring systems present in several Sinularia soft coral cembranoids. A pivotal synthetic intermediate, a tricyclic epoxy α-bromo cycloheptenone, displayed high cytotoxicity with interesting selectivity toward the HCT-116 colon cancer cell line. This intermediate enabled the pursuit of three unique D-ring annulation strategies including a photocatalyzed intramolecular Giese-type radical cyclization and a diastereoselective, intramolecular enamine-mediated Michael addition, with the latter annulation constructing the final D-ring to deliver rameswaralide. The serendipitous discovery of an oxidation state transposition of the tricyclic epoxy cycloheptenone proceeding through a presumed doubly vinylogous, E1-type elimination enabled the facile introduction of the required α-methylene butyrolactone. Preliminary biological tests of rameswaralide and precursors demonstrated weak cytotoxicity; however, the comparable cytotoxicity of a simple 6,7-bicyclic β-keto ester, corresponding to the CD-ring system of rameswaralide, to that of the natural product itself suggests that such bicyclic β-ketoesters may constitute an interesting pharmacophore that warrants further exploration.
Collapse
Affiliation(s)
- Nathanyal J Truax
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| | - Safiat Ayinde
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| |
Collapse
|
25
|
McGinnis TM, Thane TA, Jarvo ER. Zinc-Mediated Transformation of 1,3-Diols to Cyclopropanes for Late-Stage Modification of Natural Products and Medicinal Agents. Org Lett 2022; 24:5619-5623. [PMID: 35867876 PMCID: PMC9361355 DOI: 10.1021/acs.orglett.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/28/2022]
Abstract
A method for incorporating cyclopropane motifs into complex molecules has been developed. Herein we report a zinc dust-mediated cross-electrophile coupling reaction of 1,3-dimesylates to synthesize cyclopropanes. 1,3-Dimesylates can be readily accessed from 1,3-diols, a functionality prevalent in many natural products and medicinal agents. The reaction conditions are mild, such that functional groups, including amides, esters, heterocycles, and alkenes, are tolerated. Notably, we have demonstrated late-stage cyclopropanation of statin medicinal agents.
Collapse
Affiliation(s)
- Tristan M McGinnis
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Taylor A Thane
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Elizabeth R Jarvo
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
26
|
Zhou Y, Yan B, Yang Q, Long X, Zhang D, Luo R, Wang H, Sun H, Xue X, Zheng Y, Puno P. Harnessing Natural Products by a Pharmacophore-Oriented Semisynthesis Approach for the Discovery of Potential Anti-SARS-CoV-2 Agents. Angew Chem Int Ed Engl 2022; 61:e202201684. [PMID: 35484726 PMCID: PMC9074085 DOI: 10.1002/anie.202201684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Natural products possessing unique scaffolds may have antiviral activity but their complex structures hinder facile synthesis. A pharmacophore-oriented semisynthesis approach was applied to (-)-maoelactone A (1) and oridonin (2) for the discovery of anti-SARS-CoV-2 agents. The Wolff rearrangement/lactonization cascade (WRLC) reaction was developed to construct the unprecedented maoelactone-type scaffold during semisynthesis of 1. Further mechanistic study suggested a concerted mechanism for Wolff rearrangement and a water-assisted stepwise process for lactonization. The WRLC reaction then enabled the creation of a novel family by assembly of the maoelactone-type scaffold and the pharmacophore of 2, whereby one derivative inhibited SARS-CoV-2 replication in HPA EpiC cells with a low EC50 value (19±1 nM) and a high TI value (>1000), both values better than those of remdesivir.
Collapse
Affiliation(s)
- Yuan‐Fei Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Qian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Xin‐Yan Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of SciencesKunming Institute of ZoologyChinese Academy of SciencesKunming650223China
| | - Dan‐Qi Zhang
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences345 Lingling RoadShanghai200032China
| | - Rong‐Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of SciencesKunming Institute of ZoologyChinese Academy of SciencesKunming650223China
| | - Han‐Yu Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences345 Lingling RoadShanghai200032China
| | - Yong‐Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of SciencesKunming Institute of ZoologyChinese Academy of SciencesKunming650223China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| |
Collapse
|
27
|
Chen Y, Rosenkranz C, Hirte S, Kirchmair J. Ring systems in natural products: structural diversity, physicochemical properties, and coverage by synthetic compounds. Nat Prod Rep 2022; 39:1544-1556. [PMID: 35708009 DOI: 10.1039/d2np00001f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2021The structural core of most small-molecule drugs is formed by a ring system, often derived from natural products. However, despite the importance of natural product ring systems in bioactive small molecules, there is still a lack of a comprehensive overview and understanding of natural product ring systems and how their full potential can be harnessed in drug discovery and related fields. Herein, we present a comprehensive cheminformatic analysis of the structural and physicochemical properties of 38 662 natural product ring systems, and the coverage of natural product ring systems by readily purchasable, synthetic compounds that are commonly explored in virtual screening and high-throughput screening. The analysis stands out by the use of comprehensive, curated data sets, the careful consideration of stereochemical information, and a robust analysis of the 3D molecular shape and electrostatic properties of ring systems. Among the key findings of this study are the facts that only about 2% of the ring systems observed in NPs are present in approved drugs but that approximately one in two NP ring systems are represented by ring systems with identical or related 3D shape and electrostatic properties in compounds that are typically used in (high-throughput) screening.
Collapse
Affiliation(s)
- Ya Chen
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
| | - Cara Rosenkranz
- Center for Bioinformatics (ZBH), Universität Hamburg, 20146 Hamburg, Germany
| | - Steffen Hirte
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria. .,Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, 1090 Vienna, Austria
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
28
|
Dar AA, Raina A, Kumar A. Development, method validation and simultaneous quantification of eleven bioactive natural products from high altitude medicinal plant by high performance liquid chromatography. Biomed Chromatogr 2022; 36:e5408. [PMID: 35562105 DOI: 10.1002/bmc.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
Herein, a novel, rapid, reliable, simple method validation and simultaneous quantification of eleven bioactive compounds mostly xanthones have been described. ICH guidelines were used for the analytical method validation. Good linearity, repeatability, intra-day and inter-day precision, accuracy and reliability is well illuminated in the method validation procedure. The calibration curves showed a good linear relationship (r>0.999) within test range. Precision was evaluated by intra- and inter-day tests with RSDs <2.79%, accuracy validation recovery 74.16-91.84%. On quantification study, validated method described the high content of bioactive xanthone derivative including 1-hydroxy-3, 5-dimethoxyxanthone (7), 2-(allyloxy)-8-hydroxy-1, 6-dimethoxyxanthone (6) 1, 7, 8-trihydroxy-3-methoxyxanthone (9) and Coxanthone E (5) in the C. ovata which is advantageous due to numerous pharmacological and biological effects associated with these compounds mostly anti-cancers, antioxidant, anti-inflammatory, anti-mutagenic and anti-obesity activity. The bulk abundance of these compounds can also be used for the further modification to produce better lead molecules for drug discovery with low toxicity and high potency. The proposed method makes it possible to determine simultaneously all bioactive compounds in one run and can be extended for marker based standardization of herbal formulations in medicinal and pharmaceutical industries.
Collapse
Affiliation(s)
- Alamgir A Dar
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, J&K, India.,Research Centre for Residue and Quality Analysis, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Shalimar, Srinagar, J&K, India
| | - Arun Raina
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, J&K, India
| | - Anil Kumar
- Synthetic Organic Chemistry Laboratory, Sri Mata Vaishno Devi University, Katra Jammu, J&K, India
| |
Collapse
|
29
|
Zhou YF, Yan BC, Yang Q, Long XY, Zhang DQ, Luo RH, Wang HY, Sun HD, Xue XS, Zheng YT, Puno PT. Harnessing Natural Products by a Pharmacophore‐Oriented Semisynthesis Approach for the Discovery of Potential Anti‐SARS‐CoV‐2 Agents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuan-Fei Zhou
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Bing-Chao Yan
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Qian Yang
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Xin-Yan Long
- Kunming Institute of Zoology Chinese Academy of Sciences Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences CHINA
| | - Dan-Qi Zhang
- Nankai University State Key Laboratory of Elemento-organic Chemistry CHINA
| | - Rong-Hua Luo
- Kunming Institute of Zoology Chinese Academy of Sciences Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences CHINA
| | - Han-Yu Wang
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Han-Dong Sun
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Xiao-Song Xue
- Nankai University State Key Laboratory of Elemento-organic Chemistry CHINA
| | - Yong-Tang Zheng
- Kunming Institute of Zoology Chinese Academy of Sciences Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences CHINA
| | - Pema-Tenzin Puno
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China No. 132, Lanhei Road 650201 Kunming CHINA
| |
Collapse
|
30
|
Fessner ND, Badenhorst CPS, Bornscheuer UT. Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem 2022. [DOI: 10.1002/cctc.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nico D. Fessner
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Christoffel P. S. Badenhorst
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
31
|
Singla RK, Joon S, Shen L, Shen B. Translational Informatics for Natural Products as Antidepressant Agents. Front Cell Dev Biol 2022; 9:738838. [PMID: 35127696 PMCID: PMC8811306 DOI: 10.3389/fcell.2021.738838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Depression, a neurological disorder, is a universally common and debilitating illness where social and economic issues could also become one of its etiologic factors. From a global perspective, it is the fourth leading cause of long-term disability in human beings. For centuries, natural products have proven their true potential to combat various diseases and disorders, including depression and its associated ailments. Translational informatics applies informatics models at molecular, imaging, individual, and population levels to promote the translation of basic research to clinical applications. The present review summarizes natural-antidepressant-based translational informatics studies and addresses challenges and opportunities for future research in the field.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Computer-aided identification of potential inhibitors against Necator americanus glutathione S-transferase 3. INFORMATICS IN MEDICINE UNLOCKED 2022; 30:100957. [PMID: 36570094 PMCID: PMC9784411 DOI: 10.1016/j.imu.2022.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hookworm infection is caused by the blood-feeding hookworm gastrointestinal nematodes. Its harmful effects include anemia and retarded growth and are common in the tropics. A current control method involves the mass drug administration of synthetic drugs, mainly albendazole and mebendazole. There are however concerns of low efficacy and drug resistance due to their repeated and excessive use. Although, Necator americanus glutathione S-transferase 3 (Na-GST-3) is a notable target, using natural product libraries for computational elucidation of promising leads is underexploited. This study sought to use pharmacoinformatics techniques to identify compounds of natural origins with the potential to be further optimized as promising inhibitors. A compendium of 3182 African natural products together with five known helminth GST inhibitors including Cibacron blue was screened against the active sites of the Na-GST-3 structure (PDB ID: 3W8S). The hit compounds were profiled to ascertain the mechanisms of binding, anthelmintic bioactivity, physicochemical and pharmacokinetic properties. The AutoDock Vina docking protocol was validated by obtaining 0.731 as the area under the curve calculated via the receiver operating characteristics curve. Four compounds comprising ZINC85999636, ZINC35418176, ZINC14825190, and Dammarane Triterpene13 were identified as potential lead compounds with binding energies less than -9.0 kcal/mol. Furthermore, the selected compounds formed key intermolecular interactions with critical residues Tyr95, Gly13 and Ala14. Notably, ZINC85999636, ZINC14825190, and dammarane triterpene13 were predicted as anthelmintics, whilst all the four molecules shared structural similarities with known inhibitors. Molecular modelling showed that the compounds had reasonably good binding free energies. More so, they had high binding affinities when screened against other variants of the Na-GST, namely Na-GST-1 and Na-GST-2. Ligand quality assessment using ligand efficiency dependent lipophilicity, ligand efficiency, ligand efficiency scale and fit quality scale showed the molecules are worthy candidates for further optimization. The inhibitory potentials of the molecules warrant in vitro studies to evaluate their effect on the heme regulation mechanisms.
Collapse
|
33
|
Zhu H, Cai Y, Ma S, Futamura Y, Li J, Zhong W, Zhang X, Osada H, Zou H. Privileged Biorenewable Secologanin-Based Diversity-Oriented Synthesis for Pseudo-Natural Alkaloids: Uncovering Novel Neuroprotective and Antimalarial Frameworks. CHEMSUSCHEM 2021; 14:5320-5327. [PMID: 34636473 DOI: 10.1002/cssc.202101868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Bioprivileged molecules hold great promise for supplementing petrochemicals in sustainable organic synthesis of a diverse bioactive products library. Secologanin, a biorenewable monoterpenoid glucoside with unique structural elements, is the key precursor for thousands of natural monoterpenoid alkaloids. Inspired by its inherent highly congested functional groups, a secologanin-based diversity-oriented synthesis (DOS) strategy for novel pseudo-natural alkaloids was developed. All the reactive units of secologanin were involved in these operation simplicity protocols under mild reaction conditions, including the one-step enantioselective transformation of exocyclic C8, C8/C11, and C8/C9/C10 as well as the chemoenzymatic manipulation of endocyclic C2/C6 via the attack by various nucleophiles. A combinatory scenario of the aforementioned reactions further provided diverse polycyclic products with multiple chiral centers. Preliminary activity screening of these newly constructed molecules led to the discovery of antimalarial and highly potent neuroprotective skeletons. The application of green biorenewable secologanin in diversity-oriented pseudo-natural monoterpenoid alkaloid synthesis might encourage the pursuit of valuable bioactive frameworks.
Collapse
Affiliation(s)
- Huajian Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yunrui Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shijia Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Jinbiao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wen Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
34
|
Hui C, Brieger L, Strohmann C, Antonchick AP. Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines. J Am Chem Soc 2021; 143:18864-18870. [PMID: 34748319 PMCID: PMC8603356 DOI: 10.1021/jacs.1c10175] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we report a contractive synthesis of multisubstituted cyclobutanes containing multiple stereocenters from readily accessible pyrrolidines using iodonitrene chemistry. Mediated by a nitrogen extrusion process, the stereospecific synthesis of cyclobutanes involves a radical pathway. Unprecedented unsymmetrical spirocyclobutanes were prepared successfully, and a concise, formal synthesis of the cytotoxic natural product piperarborenine B is reported.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Lukas Brieger
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany.,Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, United Kingdom
| |
Collapse
|
35
|
Kim KE, Kim AN, McCormick CJ, Stoltz BM. Late-Stage Diversification: A Motivating Force in Organic Synthesis. J Am Chem Soc 2021; 143:16890-16901. [PMID: 34614361 PMCID: PMC9285880 DOI: 10.1021/jacs.1c08920] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interest in therapeutic discovery typically drives the preparation of natural product analogs, but these undertakings contribute significant advances for synthetic chemistry as well. The need for a highly efficient and scalable synthetic route to a complex molecular scaffold for diversification frequently inspires new methodological development or unique application of existing methods on structurally intricate systems. Additionally, synthetic planning with an aim toward late-stage diversification can provide access to otherwise unavailable compounds or facilitate preparation of complex molecules with diverse patterns of substitution around a shared carbon framework. For these reasons among others, programs dedicated to the diversification of natural product frameworks and other complex molecular scaffolds have been increasing in popularity, a trend likely to continue given their fruitfulness and breadth of impact. In this Perspective, we discuss our experience using late-stage diversification as a guiding principle for the synthesis of natural product analogs and reflect on the impact such efforts have on the future of complex molecule synthesis.
Collapse
Affiliation(s)
- Kelly E Kim
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Alexia N Kim
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Carter J McCormick
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
36
|
Wang X, Hu N, Kong W, Song B, Li S. Facile and divergent optimization of chromazonarol enabled the identification of simplified drimane meroterpenoids as novel pharmaceutical leads. Eur J Med Chem 2021; 227:113912. [PMID: 34653771 DOI: 10.1016/j.ejmech.2021.113912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
The diversity of drimane hydroquinones was significantly expanded by the facile construction of (+)-chromazonarol relevant natural products, isomers, and analogues for the discovery of new pharmaceutical leads. The structure-activity relationship of (+)-chromazonarol relevant (non)-natural products was delineated via the synergistic interaction of the programmable synthesis and bioactivity-guided screening. The first divergent derivatization of (+)-chromazonarol demonstrated that the phenolic hydroxyl group is one inviolable requirement for antifungal effect. Pinpoint modification of (+)-yahazunol manifested the position of hydroxyl group was crucial for both antifungal and antitumor activities. (+)-Albaconol, (+)-neoalbaconol, and two (+)-yahazunol isomers (24 and 25) proved to be the novel pharmaceutical leads. The probable macromolecular targets were estimated to deliver new information about the biological potentials resident in (+)-yahazunol relevant products. This work also featured the first synthesis of (+)-albaconol and (+)-neoalbaconol, the first biological exploration of (+)-dictyvaric acid and improved preparation of (+)-8-epi-puupehedione and a promising pelorol analogue.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing, 210095, China
| | - Nvdan Hu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Wenlong Kong
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Shengkun Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing, 210095, China.
| |
Collapse
|
37
|
Wang Z, Hui C, Xie Y. Natural STAT3 inhibitors: A mini perspective. Bioorg Chem 2021; 115:105169. [PMID: 34333418 DOI: 10.1016/j.bioorg.2021.105169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays pivotal role in several cellular processes such as cell proliferation and survival and has been found to be aberrantly activated in many cancers. STAT3 is largely believed to be one of the key oncogenes and crucial therapeutic targets. Much research has suggested the leading mechanisms for regulating the STAT3 pathway and its role in promoting tumorigenesis. Therefore, intensive efforts have been devoted to develop potent STAT3 inhibitors and several of them are currently undergoing clinical trials. Nevertheless, many natural products were identified as STAT3 inhibitors but attract less attention compared to the small molecule counterpart. In this review, the development of natural STAT3 inhibitors with an emphasis on their biological profile and chemical synthesis are detailed. The current state of STAT3 inhibitors and the future directions and opportunities for STAT3 inhibitor are discussed.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology, School of Medicine, Shenzhen 518055, People's Republic of China.
| | - Chunngai Hui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
38
|
Al Subeh ZY, Raja HA, Obike JC, Pearce CJ, Croatt MP, Oberlies NH. Media and strain studies for the scaled production of cis-enone resorcylic acid lactones as feedstocks for semisynthesis. J Antibiot (Tokyo) 2021; 74:496-507. [PMID: 34155352 PMCID: PMC8313427 DOI: 10.1038/s41429-021-00432-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Resorcylic acid lactones (RALs) with a cis-enone moiety, represented by hypothemycin (1) and (5Z)-7-oxozeaenol (2), are fungal secondary metabolites with irreversible inhibitory activity against protein kinases, with particularly selective activity for inhibition of TAK1 (transforming growth factor beta-activated kinase 1). Gram-scale quantities of these compounds were needed as feedstock for semi-synthesizing RAL-analogues in a step-economical fashion. To do so, this study had three primary goals: identifying fungi that biosynthesized 1 and 2, enhancing their production by optimizing the fermentation conditions on the lab scale, and developing straight forward purification processes. After evaluating 536 fungal extracts via an in-house dereplication protocol, three strains were identified as producing cis-enone RALs (i.e., MSX78495, MSX63935, MSX45109). Screening these fungal strains on three grain-based media revealed enhanced production of 1 by strain MSX78495 on oatmeal medium, while rice medium increased the biosynthesis of 2 by strain MSX63935. Furthermore, the purification processes were improved, moving away from HPLC purification to utilizing two to four cycles of resuspension and centrifugation in small volumes of organic solvents, generating gram-scale quantities of these metabolites readily. In addition, studying the chemistry profiles of strains MSX78495 and MSX63935 resulted in the isolation of ten other RALs (3-12), two radicinin analogues (13-14), and six benzopyranones (15-20), with 19 and 20 being newly described chlorinated benzopyranones.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Jennifer C Obike
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
39
|
Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (−)‐Isoscopariusin A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Shi‐Jun He
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Ping Zuo
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
40
|
Wang Z, Hui C. Contemporary advancements in the semi-synthesis of bioactive terpenoids and steroids. Org Biomol Chem 2021; 19:3791-3812. [PMID: 33949606 DOI: 10.1039/d1ob00448d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many natural products have intriguing biological properties that arise from their fascinating chemical structures. However, the intrinsic complexity of the structural skeleton and the reactive functional groups on natural products pose tremendous challenges to chemical syntheses. Semi-synthesis uses chemical compounds isolated from natural sources as the starting materials to produce other novel compounds with distinct chemical and medicinal properties. In particular, advancements in various types of sp3 C-H bond functionalization reactions and skeletal rearrangement methods have contributed to the re-emergence of semi-synthesis as an efficient approach for the synthesis of structurally complex bioactive natural products. Here, we begin with a brief discussion of several bioactive natural products that were obtained via a semi-synthetic approach between 2008 and 2015 and we then discuss in-depth contemporary advancements in the semi-synthesis of bioactive terpenoids and steroids reported during 2016-2020.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology, School of Medicine, Shenzhen, 518055, People's Republic of China.
| | - Chunngai Hui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
41
|
Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (−)‐Isoscopariusin A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angew Chem Int Ed Engl 2021; 60:12859-12867. [PMID: 33620745 DOI: 10.1002/anie.202100288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Shi‐Jun He
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Ping Zuo
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
42
|
Zhang XH, Guo Q, Wang HY, Li YH, Khamis MY, Ma LY, Wang B, Liu HM. Gramine-based structure optimization to enhance anti-gastric cancer activity. Bioorg Chem 2020; 107:104549. [PMID: 33383324 DOI: 10.1016/j.bioorg.2020.104549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Gramine is a natural indole alkaloid with a wide range of biological activities, but its anti-gastric cancer activity is poor. Herein, a pharmacophore fusion strategy was adopted to design and synthesize a new series of indole-azole hybrids on the structural basis of gramine. Based on our previous studies, different nitrogen-containing five-membered heterocyclic rings and terminal alkyne group were introduced into the indole-based scaffold to investigate their effect on improving the anti-gastric cancer activity of gramine derivatives. Structure-activity relationship (SAR) studies highlighted the role played by terminal alkyne in enhancing the inhibitory effect, and compound 16h displayed the best antiproliferative activity against gastric cancer MGC803 cells with IC50 value of 3.74 μM. Further investigations displayed compound 16h could induce mitochondria-mediated apoptosis, and caused cell cycle arrest at G2/M phase. Besides, compound 16h could inhibit the metastasis ability of MGC803 cells. Our studies may provide a new strategy for structural optimization of gramine to enhance anti-gastric cancer activity, and provide a potential candidate for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qian Guo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Heng-Ying Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mussa Yussuf Khamis
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; China Meheco Topfond Pharmaceutical Co., Ltd, PR China
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
43
|
Chaheine CM, Gladen PT, Abbasov ME, Romo D. Enantioselective, Organocatalytic Strategy for the Oxazolomycin Core: Formal Synthesis of (+)-Neooxazolomycin. Org Lett 2020; 22:9282-9286. [PMID: 33226820 DOI: 10.1021/acs.orglett.0c03511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A concise, organocatalytic, enantioselective route to the γ-lactam core of the oxazolomycins was developed. Key steps include a Lewis base-catalyzed, Michael proton transfer-lactamization organocascade, a one-pot N-methylation and diastereoselective α-alkylation, a diastereotopic group-selective reduction, a substrate-directed allylic hydroxylation, and a lanthanide-mediated organolithium addition to append the side chain. A formal synthesis of (+)-neooxazolomycin via interception of a Kende intermediate, accessed in 10 steps (previously 24 steps from α-d-glucose), enabled confirmation of the relative and absolute stereochemistry.
Collapse
Affiliation(s)
- Christian M Chaheine
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76798-7046, United States
| | - Paul T Gladen
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76798-7046, United States
| | - Mikail E Abbasov
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76798-7046, United States
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76798-7046, United States
| |
Collapse
|