1
|
Fu J, Bian T, Yin J, Feng M, Xu Q, Wang Y, Sum TC. Organic and inorganic sublattice coupling in two-dimensional lead halide perovskites. Nat Commun 2024; 15:4562. [PMID: 38811539 PMCID: PMC11136976 DOI: 10.1038/s41467-024-48707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Two-dimensional layered organic-inorganic halide perovskites have successfully spread to diverse optoelectronic applications. Nevertheless, there remain gaps in our understanding of the interactions between organic and inorganic sublattices that form the foundation of their remarkable properties. Here, we examine these interactions using pump-probe spectroscopy and ab initio molecular dynamics simulations. Unlike off-resonant pumping, resonant excitation of the organic sublattice alters both the electronic and lattice degrees of freedom within the inorganic sublattice, indicating the existence of electronic coupling. Theoretical simulations verify that the reduced bandgap is likely due to the enhanced distortion index of the inorganic octahedra. Further evidence of the mechanical coupling between these two sublattices is revealed through the slow heat transfer process, where the resultant lattice tensile strain launches coherent longitudinal acoustic phonons. Our findings explicate the intimate electronic and mechanical couplings between the organic and inorganic sublattices, crucial for tailoring the optoelectronic properties of two-dimensional halide perovskites.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tieyuan Bian
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, PR China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, PR China.
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qiang Xu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yue Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
2
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
3
|
Jansen M, Tisdale WA, Wood V. Nanocrystal phononics. NATURE MATERIALS 2023; 22:161-169. [PMID: 36702886 DOI: 10.1038/s41563-022-01438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems.
Collapse
Affiliation(s)
- Maximilian Jansen
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Wang J, Li M, Jiang Y, Yu K, Hartland GV, Wang GP. Polymer dependent acoustic mode coupling and Hooke's law spring constants in stacked gold nanoplates. J Chem Phys 2021; 155:144701. [PMID: 34654293 DOI: 10.1063/5.0066661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metal nanoparticles are excellent acoustic resonators and their vibrational spectroscopy has been widely investigated. However, the coupling between vibrational modes of different nanoparticles is less explored. For example, how the intervening medium affects the coupling strength is not known. Here, we investigate how different polymers affect coupling in Au nanoplate-polymer-Au nanoplate sandwich structures. The coupling between the breathing modes of the Au nanoplates was measured using single-particle pump-probe spectroscopy, and the polymer dependent coupling strength was determined experimentally. Analysis of the acoustic mode coupling gives the effective spring constant for the polymers. A relative motion mode was also observed for the stacked Au nanoplates. The frequency of this mode is strongly correlated with the coupling constant for the breathing modes. The breathing mode coupling and relative motion mode were analyzed using a coupled oscillator model. This model shows that both these effects can be described using the same spring constant for the polymer. Finally, we present a new type of mass balance using the strongly coupled resonators. We show that the resonators have a mass detection limit of a few femtograms. We envision that further understanding of the vibrational coupling in acoustic resonators will improve the coupling strength and expand their potential applications.
Collapse
Affiliation(s)
- Junzhong Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Mengying Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yiqi Jiang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Kuai Yu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Gregory V Hartland
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Guo Ping Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|