1
|
Mao X, Guo R, Chen Q, Zhu H, Li H, Yan Z, Guo Z, Wu T. Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO 2 Reduction Reactions. Molecules 2023; 28:molecules28083292. [PMID: 37110526 PMCID: PMC10146859 DOI: 10.3390/molecules28083292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed.
Collapse
Affiliation(s)
- Xinyi Mao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ruitang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Quhan Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Huiwen Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hongzhe Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zijun Yan
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zeyu Guo
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Wu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
2
|
Yang S, Guo X, Liu K, Li Y, Li T, Gu X, Arenal R, Zheng X, Li W, Sun C, Wang H, Huang F. Size effect of CoS 2 cocatalyst on photocatalytic hydrogen evolution performance of g-C 3N 4. J Colloid Interface Sci 2023; 635:305-315. [PMID: 36587582 DOI: 10.1016/j.jcis.2022.12.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The main goal of researchers is to obtain cheap cocatalysts that can promote the photocatalytic activity of catalysts. In this work, a series of CoS2/g-C3N4 (denoted as CoS2/CN) composite photocatalysts were synthesized by photodepositing CoS2 on g-C3N4 surface. The size of CoS2 species could be tuned from single-atom to nanometer scale, which had effect on photocatalysis. The 5CoS2/CN sample with proper nano size of CoS2 cocatalyst had the best photocatalytic performance (1707.19 μmol g-1h-1) in producing H2 under visible light irradiation (λ > 420 nm). Its photocatalytic activity was about 1434.6 times higher than that of pure g-C3N4 and almost equal with that of Pt/CN catalyst (1799.54 μmol g-1h-1). The Density Functional Theory (DFT) calculation results further suggested that the ability of accumulating the electrons of the cocatalyst was based on the size effect of CoS2, and the proper size of the cocatalyst efficiently promoted the separation of photogenerated electron-hole pairs.
Collapse
Affiliation(s)
- Shan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Xinyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Ke Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Yafeng Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Ting Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Xianrui Gu
- Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road Haidian District, Beijing 100083, PR China
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-U. de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain; ARAID Foundation, 50018 Zaragoza, Spain
| | - Xiaoxue Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Wei Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China.
| | - Houpeng Wang
- Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road Haidian District, Beijing 100083, PR China.
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
3
|
Hasannia M, Abnous K, Taghdisi SM, Nekooei S, Ramezani M, Alibolandi M. Synthesis of doxorubicin-loaded peptosomes hybridized with gold nanorod for targeted drug delivery and CT imaging of metastatic breast cancer. J Nanobiotechnology 2022; 20:391. [PMID: 36045404 PMCID: PMC9429417 DOI: 10.1186/s12951-022-01607-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer nanomedicines based on synthetic polypeptides have attracted much attention due to their superior biocompatibility and biodegradability, stimuli responsive capability through secondary conformation change, adjustable functionalities for various cargos such as peptides, proteins, nucleic acids and small therapeutic molecules. Recently, a few nanoformulations based on polypeptides comprising NK105, NC6004, NK911, CT2103, have entered phase I-III clinical trials for advanced solid tumors therapy. In the current study, we prepared polypeptide-based vesicles called peptosome via self-assembly of amphiphilic polypeptide-based PEG-PBLG diblock copolymer. RESULTS In this regard, poly(γ-benzyl L-glutamate (PBLG) was synthesized via ring opening polymerization (ROP) of γ-benzyl L-glutamate-N-carboxyanhydride (BLG-NCA) using N-hexylamine as initiator. Then amine-terminated PBLG was covalently conjugated to heterofuctional maleimide PEG-carboxylic acid or methyl-PEG-carboxylic acid. The PEG-PBLG peptosomes were prepared through double emulsion method for the co-delivery of doxorubicin.HCl and gold nanorods as hydrophilic and hydrophobic agents in interior compartment and membrane of peptosomes, respectively (Pep@MUA.GNR-DOX) that DOX encapsulation efficiency and loading capacity were determined 42 ± 3.6 and 1.68 ± 3.6. Then, theranostic peptosomes were decorated with thiol-functionalized EpCAM aptamer throught thiol-maleimide reaction producing Apt-Pep@MUA.GNR-DOX for targeted delivery. The non-targeted and targeted peptosomes showed 165.5 ± 1.1 and 185 ± 4.7 nm diameters, respectively while providing sustained, controlled release of DOX. Furthermore, non-targeted and targeted peptosomes showed considerable serum stability. In vitro study on MCF-7 and 4T1 cells showed significantly higher cytotoxicity for Apt-Pep@MUA.GNR-DOX in comparison with Pep@MUA.GNR-DOX while both system did not show any difference in cytotoxicity against CHO cell line. Furthermore, Apt-Pep@MUA.GNR-DOX illustrated higher cellular uptake toward EpCAM-overexpressing 4T1 cells compared to Pep@MUA.GNR-DOX. In preclinical stage, therapeutic and diagnostic capability of the prepared Pep@MUA.GNR-DOX and Apt-Pep@MUA.GNR-DOX were investigated implementing subcutaneous 4T1 tumor model in BALB/c mice. The obtained data indicated highest therapeutic index for Apt-Pep@MUA.GNR-DOX compared to Pep@MUA.GNR-DOX and free DOX. Moreover, the prepared system showed capability of CT imaging of tumor tissue in 4T1 tumorized mice through tumor accumulation even 24 h post-administration. CONCLUSION In this regard, the synthesized theranostic peptosomes offer innovative hybrid multipurpose platform for fighting against breast cancer.
Collapse
Affiliation(s)
- Maliheh Hasannia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Technology Institute, Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Mechanochemically Synthetized PAN-Based Co-N-Doped Carbon Materials as Electrocatalyst for Oxygen Evolution Reaction. NANOMATERIALS 2021; 11:nano11020290. [PMID: 33499395 PMCID: PMC7911492 DOI: 10.3390/nano11020290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
We report a new class of polyacrylonitrile (PAN)-based Co-N-doped carbon materials that can act as suitable catalyst for oxygen evolution reactions (OER). Different Co loadings were mechanochemically added into post-consumed PAN fibers. Subsequently, the samples were treated at 300 °C under air (PAN-A) or nitrogen (PAN-N) atmosphere to promote simultaneously the Co3O4 species and PAN cyclization. The resulting electrocatalysts were fully characterized and analyzed by X-ray diffraction (XRD) and photoelectron spectroscopy (XPS), transmission (TEM) and scanning electron (SEM) microscopies, as well as nitrogen porosimetry. The catalytic performance of the Co-N-doped carbon nanomaterials were tested for OER in alkaline environments. Cobalt-doped PAN-A samples showed worse OER electrocatalytic performance than their homologous PAN-N ones. The PAN-N/3% Co catalyst exhibited the lowest OER overpotential (460 mV) among all the Co-N-doped carbon nanocomposites, reaching 10 mA/cm2. This work provides in-depth insights on the electrocatalytic performance of metal-doped carbon nanomaterials for OER.
Collapse
|
5
|
Broicher C, Zeng F, Pfänder N, Frisch M, Bisswanger T, Radnik J, Stockmann JM, Palkovits S, Beine AK, Palkovits R. Iron and Manganese Containing Multi‐Walled Carbon Nanotubes as Electrocatalysts for the Oxygen Evolution Reaction ‐ Unravelling Influences on Activity and Stability. ChemCatChem 2020. [DOI: 10.1002/cctc.202000944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cornelia Broicher
- Department of Chemistry Chemical and Materials Engineering Division Technical University Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Feng Zeng
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Norbert Pfänder
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
| | - Marvin Frisch
- Department of Chemistry Chemical and Materials Engineering Division Technical University Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Timo Bisswanger
- 2nd Institute of Physics RWTH Aachen University Otto-Blumenthal-Str. 18 52074 Aachen Germany
| | - Jörg Radnik
- Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 44–46 12203 Berlin Germany
| | - Jörg Manfred Stockmann
- Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 44–46 12203 Berlin Germany
| | - Stefan Palkovits
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Anna Katharina Beine
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
| | - Regina Palkovits
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|