1
|
Dong H, Yao T, Ji X, Zhang Q, Lin X, Zhang B, Ma C, Meng L, Chen Y, Wang H. Enhancing the Lithium Storage Performance of the Nb 2O 5 Anode via Synergistic Engineering of Phase and Cu Doping. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22055-22065. [PMID: 38636080 DOI: 10.1021/acsami.4c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nb2O5 has been viewed as a promising anode material for lithium-ion batteries by virtue of its appropriate redox potential and high theoretical capacity. However, it suffers from poor electric conductivity and low ion diffusivity. Herein, we demonstrate the controllable fabrication of Cu-doped Nb2O5 with orthorhombic (T-Nb2O5) and monoclinic (H-Nb2O5) phases through annealing the solvothermally presynthesized Nb2O5 precursor under different temperatures in air, and the Cu doping amount can be readily controlled by the concentration of the precursor solution, whose effect on the lithium storage behaviors of the Cu-doped Nb2O5 is thoroughly investigated. H-Nb2O5 shows obvious redox peaks (Nb5+/Nb4+ and Nb4+/Nb3+) with much higher capacity and better cycling stability than those for the widely investigated T-Nb2O5. When introducing appropriate Cu doping, the optimized H-Cu0.1-Nb2O5 electrode shows greatly enhanced conductivity and lower diffusion barrier as revealed by the theoretical calculations and electrochemical characterizations, delivering a high reversible capacity of 203.6 mAh g-1 and a high capacity retention of 140.8 mAh g-1 after 5000 cycles at 1 A g-1, with a high initial Coulombic efficiency of 91% and a high rate capacity of 144.2 mAh g-1 at 4 A g-1. As a demonstration for full-cell application, the H-Cu0.1-Nb2O5||LiFePO4 cell displays good cycling performance, exhibiting a reversible capacity of 135 mAh g-1 after 200 cycles at 0.2 A g-1. More importantly, this work offers a new synthesis protocol of the monoclinic Nb2O5 phase with high capacity retention and improved reaction kinetics.
Collapse
Affiliation(s)
- Hao Dong
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tianhao Yao
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xin Ji
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qingmiao Zhang
- School of Chemistry & Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiongfeng Lin
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Binglin Zhang
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chuansheng Ma
- School of Chemistry & Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- School of Chemistry & Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yu Chen
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hongkang Wang
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
2
|
Zhou Q, Zhang X, Wu Y, Jiang X, Li T, Chen M, Ni L, Diao G. Polyoxometalates@Metal-Organic Frameworks Derived Bimetallic Co/Mo 2 C Nanoparticles Embedded in Carbon Nanotube-Interwoven Hierarchically Porous Carbon Polyhedron Composite as a High-Efficiency Electrocatalyst for Al-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304515. [PMID: 37541304 DOI: 10.1002/smll.202304515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Indexed: 08/06/2023]
Abstract
Al-S battery (ASB) is a promising energy storage device, notable for its safety, crustal abundance, and high theoretical energy density. However, its development faces challenges due to slow reaction kinetics and poor reversibility. The creation of a multifunctional cathode material that can both adsorb polysulfides and accelerate their conversion is key to advancing ASB. Herein, a composite composed of polyoxometalate nanohybridization-derived Mo2 C and N-doped carbon nanotube-interwoven polyhedrons (Co/Mo2 C@NCNHP) is proposed for the first time as an electrochemical catalyst in the sulfur cathode. This composite improves the utilization and conductivity of sulfur within the cathode. DFT calculations and experimental results indicate that Co enables the chemisorption of polysulfides while Mo2 C catalyzes the reduction reaction of long-chain polysulfides. X-ray photoelectron spectroscopy (XPS) and in situ UV analysis reveal the different intermediates of Al polysulfide species in Co/Mo2 C@NCNHP during discharging/charging. As a cathode material for ASB, Co/Mo2 C@NCNHP@S composite can deliver a discharge-charge voltage hysteresis of 0.75 V with a specific capacity of 370 mAh g-1 after 200 cycles at 1A g-1 .
Collapse
Affiliation(s)
- Qiuping Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xuecheng Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yuchao Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xinyuan Jiang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Tangsuo Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Ming Chen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Lubin Ni
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Guowang Diao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| |
Collapse
|
3
|
Abu Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High Performance and Long-cycle Life Rechargeable Aluminum Ion Battery: Recent Progress, Perspectives and Challenges. CHEM REC 2022; 22:e202200181. [PMID: 36094785 DOI: 10.1002/tcr.202200181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Indexed: 12/14/2022]
Abstract
The rising energy crisis and environmental concerns caused by fossil fuels have accelerated the deployment of renewable and sustainable energy sources and storage systems. As a result of immense progress in the field, cost-effective, high-performance, and long-life rechargeable batteries are imperative to meet the current and future demands for sustainable energy sources. Currently, lithium-ion batteries are widely used, but limited lithium (Li) resources have caused price spikes, threatening progress toward cleaner energy sources. Therefore, post-Li, batteries that utilize highly abundant materials leading to cost-effective energy storage solutions while offering desirable performance characteristics are urgently needed. Aluminum-ion battery (AIB) is an attractive concept that uses highly abundant aluminum while offering a high theoretical gravimetric and volumetric capacity of 2980 mAh g-1 and 8046 mAh cm-3 , respectively. As a result, intensified efforts have been made in recent years to utilize numerous electrolytes, anodes, and cathode materials to improve the electrochemical performance of AIBs, and potentially create high-performance, low-cost, and safe energy storage devices. Herein, recent progress in the electrolyte, anode, and cathode active materials and their utilization in AIBs and their related characteristics are summarized. Finally, the main challenges facing AIBs along with future directions are highlighted.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Aziz Ahmad
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Tu J, Wang W, Lei H, Wang M, Chang C, Jiao S. Design Strategies of High-Performance Positive Materials for Nonaqueous Rechargeable Aluminum Batteries: From Crystal Control to Battery Configuration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201362. [PMID: 35620966 DOI: 10.1002/smll.202201362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Rechargeable aluminum batteries (RABs) have been paid considerable attention in the field of electrochemical energy storage batteries due to their advantages of low cost, good safety, high capacity, long cycle life, and good wide-temperature performance. Unlike traditional single-ion rocking chair batteries, more than two kinds of active ions are electrochemically participated in the reaction processes on the positive and negative electrodes for nonaqueous RABs, so the reaction kinetics and battery electrochemistries need to be given more comprehensive assessments. In addition, although nonaqueous RABs have made significant breakthroughs in recent years, they are still facing great challenges in insufficient reaction kinetics, low energy density, and serious capacity attenuation. Here, the research progresses of positive materials are comprehensively summarized, including carbonaceous materials, oxides, elemental S/Se/Te and chalcogenides, as well as organic materials. Later, different modification strategies are discussed to improve the reaction kinetics and battery performance, including crystal structure control, morphology and architecture regulation, as well as flexible design. Finally, in view of the current research challenges faced by nonaqueous RABs, the future development trend is proposed. More importantly, it is expected to gain key insights into the development of high-performance positive materials for nonaqueous RABs to meet practical energy storage requirements.
Collapse
Affiliation(s)
- Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Cheng Chang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
5
|
Yan C, Lv C, Jia BE, Zhong L, Cao X, Guo X, Liu H, Xu W, Liu D, Yang L, Liu J, Hng HH, Chen W, Song L, Li S, Liu Z, Yan Q, Yu G. Reversible Al Metal Anodes Enabled by Amorphization for Aqueous Aluminum Batteries. J Am Chem Soc 2022; 144:11444-11455. [PMID: 35723429 DOI: 10.1021/jacs.2c04820] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aqueous aluminum metal batteries (AMBs) are regarded as one of the most sustainable energy storage systems among post-lithium-ion candidates, which is attributable to their highest theoretical volumetric capacity, inherent safe operation, and low cost. Yet, the development of aqueous AMBs is plagued by the incapable aluminum plating in an aqueous solution and severe parasitic reactions, which results in the limited discharge voltage, thus making the development of aqueous AMBs unsuccessful so far. Here, we demonstrate that amorphization is an effective strategy to tackle these critical issues of a metallic Al anode by shifting the reduction potential for Al deposition. The amorphous aluminum (a-Al) interfacial layer is triggered by an in situ lithium-ion alloying/dealloying process on a metallic Al substrate with low strength. Unveiled by experimental and theoretical investigations, the amorphous structure greatly lowers the Al nucleation energy barrier, which forces the Al deposition competitive to the electron-stealing hydrogen evolution reaction (HER). Simultaneously, the inhibited HER mitigates the passivation, promoting interfacial ion transfer kinetics and enabling steady aluminum plating/stripping for 800 h in the symmetric cell. The resultant multiple full cells using Al@a-Al anodes deliver approximately a 0.6 V increase in the discharge voltage plateau compared to that of bare Al-based cells, which far outperform all reported aqueous AMBs. In both symmetric cells and full cells, the excellent electrochemical performances are achieved in a noncorrosive, low-cost, and fluorine-free Al2(SO4)3 electrolyte, which is ecofriendly and can be easily adapted for sustainable large-scale applications. This work brings an intriguing picture of the design of metallic anodes for reversible and high-voltage AMBs.
Collapse
Affiliation(s)
- Chunshuang Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.,School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Chade Lv
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.,School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Bei-Er Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lixiang Zhong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuelin Guo
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Daobin Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lan Yang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Huey Hoon Hng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Chen
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Li Song
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Yu J, Li X, Li N, Wu T, Liu Y, Li C, Liu J, Wang L. Pencil-Drawing Graphite Nanosheets: A Simple and Effective Cathode for High-Capacity Aluminum Batteries. SMALL METHODS 2022; 6:e2200026. [PMID: 35233980 DOI: 10.1002/smtd.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Commercial graphite, as an attractive cathode material, has been extensively applied in rechargeable aluminum batteries. However, low capacity and complex cathode preparation procedures limit its further development. Herein, graphite nanosheets as cathode of aluminum battery have been prepared by a novel pencil-drawing strategy, which shows superior capacity of 96 mAh g-1 and excellent stability with almost 100% capacity retention after 2000 cycles at a current density of 0.5 A g-1 . By increasing charge-discharge current density to 2 A g-1 , the battery also exhibits a high capacity of 72 mAh g-1 and retains 90% after 6000 cycles. Furthermore, a stage 3 anion intercalation/deintercalation mechanism has been proposed according to in situ X-ray diffraction and ex situ characterization techniques. This work provides a controllable method for developing a graphite nanosheets cathode with a simplified process and contributes to the development of other kinds of energy storage devices.
Collapse
Affiliation(s)
- Jiangkun Yu
- Key Laboratory of Eco-chemical Engineering, International Cooperation Base of Eco-chemical Engineering and Intelligent Manufacturing, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaojing Li
- Key Laboratory of Eco-chemical Engineering, International Cooperation Base of Eco-chemical Engineering and Intelligent Manufacturing, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Na Li
- Key Laboratory of Eco-chemical Engineering, International Cooperation Base of Eco-chemical Engineering and Intelligent Manufacturing, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Tingting Wu
- Key Laboratory of Eco-chemical Engineering, International Cooperation Base of Eco-chemical Engineering and Intelligent Manufacturing, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yanru Liu
- Key Laboratory of Eco-chemical Engineering, International Cooperation Base of Eco-chemical Engineering and Intelligent Manufacturing, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Caixia Li
- Key Laboratory of Eco-chemical Engineering, International Cooperation Base of Eco-chemical Engineering and Intelligent Manufacturing, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jie Liu
- Key Laboratory of Eco-chemical Engineering, International Cooperation Base of Eco-chemical Engineering and Intelligent Manufacturing, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, International Cooperation Base of Eco-chemical Engineering and Intelligent Manufacturing, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
7
|
Go H, Michael RR, Tak Y, Lee G. Electrochemically surface‐modified aluminum electrode enabling high performance and ultra‐long cycling life Al‐ion batteries. ELECTROANAL 2022. [DOI: 10.1002/elan.202100669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Gibaek Lee
- Yeungnam University KOREA (THE REPUBLIC OF)
| |
Collapse
|
8
|
Yang M, Li S, Huang J. Three-Dimensional Cross-Linked Nb 2O 5 Polymorphs Derived from Cellulose Substances: Insights into the Mechanisms of Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39501-39512. [PMID: 34433243 DOI: 10.1021/acsami.1c11720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Niobium pentoxide (Nb2O5)-based materials have been regarded as promising anodic materials for lithium-ion batteries due to their abundant crystalline phases and stable and safe lithium storage performances. However, there is a lack of systematic studies of the relationship among the crystal structures, electrochemical characteristics, and lithium storage mechanisms for the various Nb2O5 polymorphs. Herein, pure pseudohexagonal Nb2O5 (TT-Nb2O5), orthorhombic Nb2O5 (T-Nb2O5), tetragonal Nb2O5 (M-Nb2O5), and monoclinic Nb2O5 (H-Nb2O5) with three-dimensional interconnected structures are reported, which were synthesized via a hydrothermal method using the commercial filter paper as the structural template followed by specific annealing processes. Impressively, the TT- and T-Nb2O5 species both possess bronze-like phases with "room and pillar" structures, while M- and H-Nb2O5 ones are both in the Wadsley-Roth phases with crystallographic shear structures. Among the pristine Nb2O5 materials, H-Nb2O5 exhibits the highest initial specific capacity (270 mA h g-1), while T-Nb2O5 performs with the lowest (197 mA h g-1) at 0.02 A g-1, meaning that crystallographic shear structures provide more lithium storage sites. TT-Nb2O5 realizes the best rate capability (207 mA h g-1 at 0.02 A g-1 and 103 mA h g-1 at 4.0 A g-1), indicating that the "room and pillar" crystal structures favor fast lithium storage. Electrochemical analyses reveal that the TT- and T-Nb2O5 phases with "room and pillar" crystal structures utilize a pseudocapacitive intercalation mechanism, while the M- and H-Nb2O5 phases with the Wadsley-Roth shear structures follow a typical battery-type intercalation mechanism. A fresh insight into the further understanding of the intercalation pseudocapacitance on the basis of the unit cells of the electrode materials and a meaningful guidance for crystalline structural design/construction of the electrode materials for the next-generation LIBs are thus provided.
Collapse
Affiliation(s)
- Ming Yang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shun Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianguo Huang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
9
|
Lin Z, Mao M, Yang C, Tong Y, Li Q, Yue J, Yang G, Zhang Q, Hong L, Yu X, Gu L, Hu YS, Li H, Huang X, Suo L, Chen L. Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. SCIENCE ADVANCES 2021; 7:7/35/eabg6314. [PMID: 34433562 PMCID: PMC8386935 DOI: 10.1126/sciadv.abg6314] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The strong electrostatic interaction between Al3+ and close-packed crystalline structures, and the single-electron transfer ability of traditional cationic redox cathodes, pose challenged for the development of high-performance rechargeable aluminum batteries. Here, to break the confinement of fixed lattice spacing on the diffusion and storage of Al-ion, we developed a previously unexplored family of amorphous anion-rich titanium polysulfides (a-TiS x , x = 2, 3, and 4) (AATPs) with a high concentration of defects and a large number of anionic redox centers. The AATP cathodes, especially a-TiS4, achieved a high reversible capacity of 206 mAh/g with a long duration of 1000 cycles. Further, the spectroscopy and molecular dynamics simulations revealed that sulfur anions in the AATP cathodes act as the main redox centers to reach local electroneutrality. Simultaneously, titanium cations serve as the supporting frameworks, undergoing the evolution of coordination numbers in the local structure.
Collapse
Affiliation(s)
- Zejing Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglei Mao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenxing Yang
- School of Materials Science and Engineering and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxin Tong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinghao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Physics, Qingdao University, Qingdao, Shandong 266071, China
| | - Jinming Yue
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Gaojing Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinghua Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Hong
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiqian Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong-Sheng Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuejie Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Liumin Suo
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Physics Research Center Co. Ltd., Liyang, Jiangsu 213300, China
| | - Liquan Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|