1
|
Balwe SG, Moon D, Hong M, Song JM. Manganese oxide nanomaterials: bridging synthesis and therapeutic innovations for cancer treatment. NANO CONVERGENCE 2024; 11:48. [PMID: 39604693 PMCID: PMC11602914 DOI: 10.1186/s40580-024-00456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
The advent of precision medicine in oncology emphasizes the urgent need for innovative therapeutic strategies that effectively integrate diagnosis and treatment while minimizing invasiveness. Manganese oxide nanomaterials (MONs) have emerged as a promising class of nanocarriers in biomedicine, particularly for targeted drug delivery and the therapeutic management of tumors. These nanomaterials are characterized by exceptional responsiveness to the tumor microenvironment (TME), high catalytic efficiency, favorable biodegradability, and advanced capabilities in magnetic resonance imaging. These attributes significantly enhance drug delivery, facilitate real-time bioimaging, and enable early tumor detection, thereby improving the precision and effectiveness of cancer therapies. This review highlights the significant advancements in the synthesis and therapeutic applications of MONs, beginning with a comprehensive overview of key synthetic methods, including thermal decomposition, potassium permanganate reduction, exfoliation, adsorption-oxidation, and hydro/solvothermal techniques. We delve into the preparation of MONs and H-MnO₂-based nanomaterials, emphasizing their chemical properties, surface modifications, and toxicity profiles, which are critical for their clinical application. Moreover, we discuss the notable applications of H-MnO₂-based nanomaterials in pH-responsive drug release, overcoming multidrug resistance (MDR), immunotherapy, and the development of nanovaccines for synergistic cancer treatments. By addressing the current challenges in the clinical translation of MONs, we propose future research directions for overcoming these obstacles. By underscoring the potential of MONs to transform cancer treatment paradigms, this review aims to inspire further investigations into their multifunctional applications in oncology, thus ultimately contributing to more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Dohyeon Moon
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Minki Hong
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
3
|
Cheng Y, Liu X, Rutkowski S, Badaraev AD, Kozelskaya AI, Tverdokhlebov SI, Frueh J. Investigation of the Antibacterial Properties of Janus Micromotors Catalytic Propelled by Manganese Dioxide and Hydrogen Peroxide to Reduce Bacterial Density. ACS APPLIED BIO MATERIALS 2024; 7:6529-6541. [PMID: 39357930 DOI: 10.1021/acsabm.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Between 2015 and 2017, 90% of Chinese adults were reported to have periodontitis of varying degrees, highlighting the importance of novel, inexpensive, and affordable treatments for the public. The fact that more and more pathogens are becoming resistant to antibiotics further highlights this prevalence. This article addresses a novel micromotor capable of generating reactive oxygen species, as proven by a Fenton-like reaction. Such reactions allow the targeting of Gram-negative bacteria such as Escherichia coli, which are eliminated order of magnitude more effectively than by pure hydrogen peroxide, thereby addressing pathogens relevant in oral infections. The basis of the micromotors, which generate reactive oxygen species on site, reduces the likelihood of resistance developing in these types of bacteria. Catalytically reducing hydrogen peroxide in this process, these micromotors propel themselves forward. This proof of principle study paves the way for the utilization of micromotors in the field of skin disinfection utilizing hydrogen peroxide concentrations which were in previous works proven noncytotoxic.
Collapse
Affiliation(s)
- Yanfang Cheng
- Faculty of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
| | - Xiaolan Liu
- Faculty of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
| | - Sven Rutkowski
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Arsalan D Badaraev
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Anna I Kozelskaya
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Sergei I Tverdokhlebov
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Johannes Frueh
- Faculty of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
- Institute of Environmental Engineering, ETH Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Wang AT, Wen X, Duan S, Tian J, Liu L, Zhang W. A gold cluster fused manganese dioxide nanocube loaded with dihydroartemisinin for effective cancer treatment via amplified oxidative stress. RSC Adv 2024; 14:27703-27711. [PMID: 39224649 PMCID: PMC11367086 DOI: 10.1039/d4ra03164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chemodynamic therapy, leveraging metabolic processes for reactive oxygen species (ROS) generation, shows promise in cancer eradication. However, its efficacy is hampered by hypoxic conditions, substrate scarcity, and abundant ROS scavengers. In this study, we have devised a cubic manganese oxide nanozyme (BSA-AuNC-MnO2@DHA) to tackle these obstacles. This nanozyme integrates MnO2 with bovine serum albumin (BSA)-coated gold nanoclusters (AuNC), forming BSA-AuNC-MnO2, and further incorporates dihydroartemisinin (DHA) to confer both bioimaging and anticancer capabilities. The BSA-AuNC-MnO2 nanoparticles exhibit a uniform cubic morphology, with an average hydrated particle diameter of 76.4 ± 7.1 nm and a zeta potential of -32.6 mV, indicative of their excellent dispersion and stability. The encapsulation efficiency of DHA within the BSA-AuNC-MnO2@DHA system achieved a remarkable value of 72.45%, attesting to its substantial drug-loading capacity. MnO2 serves a dual function within the nanozyme: it augments oxidative stress while concurrently inhibiting antioxidant defenses. It depletes the antioxidant glutathione (GSH) to release Mn2+, which in turn catalyzes ROS production from intracellular substrates and DHA. The remarkable anticancer efficacy of this tailored approach is evidenced by the potent inhibition of tumor growth observed after a single-dose administration, which underscores the amplification of oxidative stress. Additionally, BSA-AuNC-MnO2@DHA exhibits negligible toxicity to major organs, highlighting its exceptional biocompatibility and safety profile.
Collapse
Affiliation(s)
- Alan Tianyi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Shanghai Xianguang Biotechnology Co., Ltd 318 Jungong Road Shanghai 200090 China
| | - Xin Wen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Shangyi Duan
- Shanghai Xianguang Biotechnology Co., Ltd 318 Jungong Road Shanghai 200090 China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Liang Liu
- Shanghai Xianguang Biotechnology Co., Ltd 318 Jungong Road Shanghai 200090 China
| | - Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| |
Collapse
|
5
|
Liang L, Jia M, Zhao M, Deng Y, Tang J, He X, Liu Y, Yan K, Yu X, Yang H, Li C, Li Y, Li T. Progress of Nanomaterials Based on Manganese Dioxide in the Field of Tumor Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8883-8900. [PMID: 39224196 PMCID: PMC11368147 DOI: 10.2147/ijn.s477026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
As a pivotal transition metal oxide, manganese dioxide (MnO2) has garnered significant attention owing to its abundant reserves, diverse crystal structures and exceptional performance. Nanosizing MnO2 results in smaller particle sizes, larger specific surface areas, optimized material characteristics, and expanded application possibilities. With the burgeoning research efforts in this field, MnO2 has emerged as a promising nanomaterial for tumor diagnosis and therapy. The distinctive properties of MnO2 in regulating the tumor microenvironment (TME) have attracted considerable interest, leading to a rapid growth in research on MnO2-based nanomaterials for tumor diagnosis and treatment. Additionally, MnO2 nanomaterials are also gradually showing up in the regulation of chronic inflammatory diseases. In this review, we mainly summarized the recent advancements in various MnO2 nanomaterials for tumor diagnosis and therapy. Furthermore, we discuss the current challenges and future directions in the development of MnO2 nanomaterials, while also envisaging their potential for clinical translation.
Collapse
Grants
- This work was supported by the Sichuan Science and Technology Program (grant numbers 2023NSFSC0620, 2022YFS0614, 2022YFS0622, 2022YFS0627), the Luzhou Municipal People’s Government-Southwest Medical University Joint Scientific Research Project (grant number 2023LZXNYDHZ003), the Open fund for Key Laboratory of Medical Electrophysiology of Ministry of Education (grant numbers KeyME-2023-07), the Youth Science Foundation Project of Southwest Medical University (grant numbers 2023QN075, 2022QN025), the Southwest Medical University Science and Technology Project (No.2021ZKMS034), the Hejiang County People’s Hospital-Southwest Medical University Joint Scientific Research Project (grant numbers 2023HJXNYD03, 2022HJXNYD03, 2022HJXNYD14), Chinese student innovation and entrepreneurship project (202310632027)
Collapse
Affiliation(s)
- Lijuan Liang
- Department of Pharmacy, Hejiang County People’s Hospital, Luzhou, Sichuan, People’s Republic of China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nanchong Institute for Food and Drug Control, Nanchong, Sichuan, People’s Republic of China
| | - Min Zhao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hong Yang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Science and Technology department, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Xie C, Xu Z, Zheng Y, Wang S, Dai M, Xiao C. Research Progress on the Preparation of Manganese Dioxide Nanomaterials and Their Electrochemical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1283. [PMID: 39120387 PMCID: PMC11313769 DOI: 10.3390/nano14151283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Manganese dioxide (MnO2) nanomaterials have shown excellent performance in catalytic degradation and other fields because of their low density and great specific surface area, as well as their tunable chemical characteristics. However, the methods used to synthesize MnO2 nanomaterials greatly affect their structures and properties. Therefore, the present work systematically illustrates common synthetic routes and their advantages and disadvantages, as well as examining research progress relating to electrochemical applications. In contrast to previous reviews, this review summarizes approaches for preparing MnO2 nanoparticles and describes their respective merits, demerits, and limitations. The aim is to help readers better select appropriate preparation methods for MnO2 nanomaterials and translate research results into practical applications. Finally, we also point out that despite the significant progress that has been made in the development of MnO2 nanomaterials for electrochemical applications, the related research remains in the early stages, and the focus of future research should be placed on the development of green synthesis methods, as well as the composition and modification of MnO2 nanoparticles with other materials.
Collapse
Affiliation(s)
- Chunsheng Xie
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| | - Zesheng Xu
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
| | - Yujian Zheng
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
| | - Shuo Wang
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Min Dai
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| | - Chun Xiao
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| |
Collapse
|
7
|
Liu M, Xia Q, Wu X, Jin S, Xie Y, Yan R, Jin Y, Wang Z. Anti-Colon Cancer Activity of Copper-Doped Folate Carbon Dots/MnO 2 Complexes Based on Oxygenation and Immune-Enhancing Effects. Bioconjug Chem 2024; 35:826-842. [PMID: 38722674 DOI: 10.1021/acs.bioconjchem.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In clinical practice, the treatment of colon cancer is faced with the dilemma of metastasis and recurrence, which is related to immunosuppression and hypoxia. Immune checkpoint blockade (ICB) is a negative regulatory pathway of immunity. Immune checkpoint blockade (ICB) is an important immunotherapy method. However, inadequate immunogenicity reduces the overall response rate of ICB. In this study, a tumor microenvironment-responsive nanomedicine (Cu-FACD@MnO2@FA) was prepared to increase host immune response and increase intracellular oxygen levels. Cu-FACD@MnO2@FA preferentially enriched at the tumor site, combined with the immune checkpoint inhibitor alpha PD-L1, induced sufficient immunogenicity to treat colon cancer. Immunofluorescence detection of tumor cells and tissues showed that the expression of hypoxa-inducing factor 1α was significantly down-regulated after treatment and the expression of immunoactivity-related proteins was significantly changed. In vivo treatment in a bilateral tumor mouse model showed complete ablation of the primary tumor and efficient inhibition of the distal tumor. In this study, for the first time, the oxygenation effects of MnO2-coated Cu-doped carbon dots and chemodynamic therapy and a strategy of combining with immuno-blocking therapy were used for treating colon cancer.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Qing Xia
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Siran Jin
- Harbin No. 3 School, Harbin 150070, China
| | - Yutian Xie
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
8
|
Xia X, Li H, Zang J, Cheng S, Du M. Advancements of the Molecular Directed Design and Structure-Activity Relationship of Ferritin Nanocage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7629-7654. [PMID: 38518374 DOI: 10.1021/acs.jafc.3c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Ferritin nanocages possess remarkable structural properties and biological functions, making them highly attractive for applications in functional materials and biomedicine. This comprehensive review presents an overview of the molecular characteristics, extraction and identification of ferritin, ferritin receptors, as well as the advancements in the directional design of high-order assemblies of ferritin and the applications based on its unique structural properties. Specifically, this Review focuses on the regulation of ferritin assembly from one to three dimensions, leveraging the symmetry of ferritin and modifications on key interfaces. Furthermore, it discusses targeted delivery of nutrition and drugs through facile loading and functional modification of ferritin. The aim of this Review is to inspire the design of micro/nano functional materials using ferritin and the development of nanodelivery vehicles for nutritional fortification and disease treatment.
Collapse
Affiliation(s)
- Xiaoyu Xia
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Han Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuzhen Cheng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Zhang Z, Yu D, Sui D, Shi M, Wang K, Zhang Y, Ji Y. Manganese Dioxide Nanoplatform with a Hollow Rhombic Dodecahedron Morphology for Drug Delivery. ACS APPLIED BIO MATERIALS 2024; 7:1169-1178. [PMID: 38253011 DOI: 10.1021/acsabm.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Manganese dioxide (MnO2) is considered as a promising drug carrier material suitable for the tumor microenvironment while lacking conducive structures for drug loading. Herein, we construct a MnO2 nanoplatform with a hollow rhombic dodecahedral morphology for drug delivery. In this work, we obtained zeolitic imidazolate framework nanoparticles (ZIF-90 NPs) via a coordination reaction. Furthermore, the drug-loading nanoparticles (ZIF-90/DOX NPs) were obtained by Schiff's base reaction and then selected as a sacrificial template to obtain the hollow nanoplatforms (ZIF-90@MnO2 NPs). Moreover, the photothermal effect and multiresponsive drug release behaviors were revealed by loading the photothermal agent IR-820 and the anticancer drug doxorubicin hydrochloride (DOX). Our study demonstrates that the ZIF-90@MnO2 NPs loaded with photosensitizers exhibited excellent photothermal conversion performance. Benefiting from the hollow structure and redox activity, remarkable drug loading and release performances of ZIF-90@MnO2 NPs were achieved. It is shown that ZIF-90@MnO2 NPs achieved a satisfactory drug-loading efficiency (up to ca. 69.7%) for DOX. More promisingly, the ZIF-90@MnO2 NPs exhibited significant glutathione (GSH)/pH-responsive drug release and degradation performances. Overall, this work highlights the potential of controlled drug release of nanocarriers and offers unique insights into the design of nanocarriers with hollow structures.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Danlu Yu
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Dan Sui
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Miaomiao Shi
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Kangjun Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yajing Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Wang G, Wang W, Chen Z, Hu T, Tu L, Wang X, Hu W, Li S, Wang Z. Photothermal microneedle patch loaded with antimicrobial peptide/MnO2 hybrid nanoparticles for chronic wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 482:148938. [DOI: 10.1016/j.cej.2024.148938] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
11
|
Liu Y, Huang Y, Lu P, Ma Y, Xiong L, Zhang X, Yin Z, Xu H, Nie Y, Luo J, Xiong Z, Liang X. Manganese Dioxide/Gold-based Active Tumor Targeting Nanoprobes for Enhancing Photodynamic and Low-Temperature-Photothermal Combination Therapy in Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54207-54220. [PMID: 37974457 DOI: 10.1021/acsami.3c06535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Tumor drug resistance caused by the tumor microenvironment is an extremely difficult problem for researchers to solve. Nanoplatforms that integrate diagnosis and treatment have great advantages in tumor treatment, but the design and synthesis of simple and efficient nanoplatforms still face tremendous challenges. In this study, a novel Mn/Au@ir820/GA-CD133 nanoprobe was developed. The manganese dioxide/gold particles were prepared by coprecipitation/assembly, chemically coupled with CD133 antibody, and finally loaded with the photosensitive drug IR820 and the heat shock protein inhibitor Ganetespib. The nanoprobe demonstrated good tumor-targeting ability, increased the level of singlet oxygen produced from laser irradiation by effectively alleviating tumor hypoxia, and decreased the threshold of heat tolerance by downregulating the expression of HSP90 in tumor tissues. This nanoprobe successfully inhibited the growth and progression of tumor tissues in a tumor-bearing mouse model by improving the effectiveness of photodynamic and low-temperature photothermal combination therapy.
Collapse
Affiliation(s)
- Yanyan Liu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yue Huang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ping Lu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Yifei Ma
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Lingyi Xiong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Xiangchen Zhang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Zhucheng Yin
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Hongli Xu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Yanli Nie
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Jing Luo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhiguo Xiong
- Department of Oncology Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| |
Collapse
|
12
|
Khan S, Balyan P, Ali A, Sharma S, Sachar S. Exploring the effect of surfactants on the interactions of manganese dioxide nanoparticles with biomolecules. J Biomol Struct Dyn 2023:1-21. [PMID: 38006308 DOI: 10.1080/07391102.2023.2283157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/27/2023] [Indexed: 11/27/2023]
Abstract
Interactions of manganese dioxide nanoparticles (MnO2 NPs) with vital biomolecules namely deoxyribonucleic acid (DNA) and serum albumin (BSA) have been studied in association with different surfactants by using fluorescence (steady state, synchronous and 3D), UV-visible, resonance light scattering (RLS), dynamic light scattering (DLS), and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The esterase activity of serum albumin was tested in associations with MnO2 NPs and surfactants. The antioxidant potential of prepared NPs was also evaluated (DPPH method). Gel electrophoresis was carried out to analyze the effect of MnO2 NPs and surfactants on DNA. Presence of CTAB, Tween 20, DTAB and Tween 80 enhanced nanoparticle-protein binding. Tween 20 based nanoparticle systems showed long-term stability and biocompatibility. The quenching of BSA fluorescence emission in presence of MnO2 NPs alone and along with Tween 20 revealed stronger association of nanoparticles with proteins. Enhancement in the esterase activity (BSA) was observed in the presence of Tween 20. Furthermore, radical scavenging activity showed highest antioxidant potential in presence of Tween 20. The enthalpy and entropy assessment for protein-NPs association showed the predominance of Vander Waals interactions and hydrogen bonding. The synchronous fluorescence analysis highlighted the involvement of tryptophan (Trp) in the MnO2 NPs-protein interactions. The study evaluates the influence of surfactant on the associations of MnO2 NPs with the essential biomolecules. The findings can be crucially utilized in designing biocompatible MnO2 formulations for long term applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shagufta Khan
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Prairna Balyan
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Punjab University, Chandigarh, India
| | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, India
| |
Collapse
|
13
|
Fan H, McGhee CE, Lake RJ, Yang Z, Guo Z, Zhang XB, Lu Y. A Highly Selective Mn(II)-Specific DNAzyme and Its Application in Intracellular Sensing. JACS AU 2023; 3:1615-1622. [PMID: 37388692 PMCID: PMC10302744 DOI: 10.1021/jacsau.3c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
Manganese is an essential trace element in the human body that acts as a cofactor in many enzymes and metabolisms. It is important to develop methods to detect Mn2+ in living cells. While fluorescent sensors have been very effective in detecting other metal ions, Mn2+-specific fluorescent sensors are rarely reported due to nonspecific fluorescence quenching by the paramagnetism of Mn2+ and poor selectivity against other metal ions such as Ca2+ and Mg2+. To address these issues, we herein report in vitro selection of an RNA-cleaving DNAzyme with exceptionally high selectivity for Mn2+. Through converting it into a fluorescent sensor using a catalytic beacon approach, Mn2+ sensing in immune cells and tumor cells has been achieved. The sensor is also used to monitor degradation of manganese-based nanomaterials such as MnOx in tumor cells. Therefore, this work provides an excellent tool to detect Mn2+ in biological systems and monitor the Mn2+-involved immune response and antitumor therapy.
Collapse
Affiliation(s)
- Huanhuan Fan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Claire E. McGhee
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan J. Lake
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Yi Lu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Blinov A, Gvozdenko A, Golik A, Siddiqui SA, Göğüş F, Blinova A, Maglakelidze D, Shevchenko I, Rebezov M, Nagdalian A. Effect of Mn xO y Nanoparticles Stabilized with Methionine on Germination of Barley Seeds ( Hordeum vulgare L.). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091577. [PMID: 37177122 PMCID: PMC10180524 DOI: 10.3390/nano13091577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The aim of this research was to study the effect of MnxOy nanoparticles stabilized with L-methionine on the morphofunctional characteristics of the barley (Hordeum vulgare L.) crop. MnxOy nanoparticles stabilized with L-methionine were synthesized using potassium permanganate and L-methionine. We established that MnxOy nanoparticles have a diameter of 15 to 30 nm. According to quantum chemical modeling and IR spectroscopy, it is shown that the interaction of MnxOy nanoparticles with L-methionine occurs through the amino group. It is found that MnxOy nanoparticles stabilized with L-methionine have positive effects on the roots and seedling length, as well as the seed germination energy. The effect of MnxOy nanoparticles on Hordeum vulgare L. seeds is nonlinear. At a concentration of 0.05 mg/mL, there was a statistically significant increase in the length of seedlings by 68% compared to the control group. We found that the root lengths of samples treated with MnxOy nanoparticle sols with a concentration of 0.05 mg/mL were 62.8%, 32.7%, and 158.9% higher compared to samples treated with L-methionine, KMnO4, and the control sample, respectively. We have shown that at a concentration of 0.05 mg/mL, the germination energy of seeds increases by 50.0% compared to the control sample, by 10.0% compared to the samples treated with L-methionine, and by 13.8% compared to the samples treated with KMnO4.
Collapse
Affiliation(s)
- Andrey Blinov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Alexey Gvozdenko
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Alexey Golik
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Shahida A Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich (TUM), 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), 49610 D-Quakenbrück, Germany
| | - Fahrettin Göğüş
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Anastasiya Blinova
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - David Maglakelidze
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Irina Shevchenko
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Maksim Rebezov
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 109240 Moscow, Russia
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 355017 Stavropol, Russia
| |
Collapse
|
15
|
Fan H, Guo Z. Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Zhang HL, Wang Y, Tang Q, Ren B, Yang SP, Liu JG. A mesoporous MnO 2-based nanoplatform with near infrared light-controlled nitric oxide delivery and tumor microenvironment modulation for enhanced antitumor therapy. J Inorg Biochem 2023; 241:112133. [PMID: 36708626 DOI: 10.1016/j.jinorgbio.2023.112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
A hollow mesoporous manganese dioxide-based (H-MnO2) multifunctional nanoplatform, H-MnO2 @AFIPB@PDA@Ru-NO@FA (MAPRF NPs), was prepared for synergistic cancer treatment, in which a histone deacetylase inhibitor AFIPB was loaded in its hollow cavity and a ruthenium nitrosyl donor (Ru-NO) and a folic acid (FA) targeting group were covalently decorated on its covered polydopamine (PDA) layer. The MAPRF NPs showed tumor microenvironment (TME)-responsive properties of depletion of glutathione (GSH) to disrupt the antioxidant defense system and on-demand drug delivery. And the released Mn2+ further catalyzed the decomposition of endogenous H2O2 to produce highly toxic hydroxyl radicals (·OH) for enhanced chemodynamic therapy (CDT). Furthermore, upon 808 nm light irradiation MAPRF NPs exhibited controlled nitric oxide (NO) delivery and simultaneously produced significant photothermal effect. Consequently, MAPRF NPs showed high mortality toward cancer cells in the presence of 808 nm light irradiation. This work provides a paradigm of multimodal synergistic therapy that combines NO-based gas therapy with TME modulation for efficient antitumor therapy.
Collapse
Affiliation(s)
- Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shi-Ping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
17
|
An Y, Chen W, Li Y, Zhao H, Ye D, Liu H, Wu K, Ju H. Crosslinked albumin-manganese nanoaggregates with sensitized T1 relaxivity and indocyanine green loading for multimodal imaging and cancer phototherapy. J Mater Chem B 2023; 11:2157-2165. [PMID: 36779282 DOI: 10.1039/d2tb02529a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Albumin-manganese-based nanocomposites (AMNs) characterized by simple preparation and good biocompatibility have been widely used for in vivo T1-weighted magnetic resonance imaging (MRI) and cancer theranostics. Herein, an aggregation and crosslinking assembly strategy was proposed to achieve the sensitization to T1 relaxivity of the albumin-manganese nanocomposite. At a relatively low Mn content (0.35%), the aggregation and crosslinking of bovine serum albumin-MnO2 (BM) resulted in a dramatic increase of T1 relaxivity from 5.49 to 67.2 mM-1 s-1. Upon the loading of indocyanine green (ICG) into the crosslinked BM nanoaggregates (C-BM), the T1 relaxivity of the C-BM/ICG nanocomposite (C-BM/I) was further increased to 97.3 mM-1 s-1, which was much higher than those reported previously even at high Mn contents. Moreover, the presence of C-BM greatly enhanced the photoacoustic (PA) and photothermal effects of ICG at 830 and 808 nm, respectively, and the second near infrared fluorescence (NIR-II FL) of ICG also showed better stability. Therefore, the synthesized C-BM/ICG nanocomposite exhibited remarkable performance in in vivo multimodal imaging of tumors, such as T1-weighted MRI, NIR-II FL imaging and PA imaging, and cancer phototherapy with little side effects. This work provided a highly efficient and promising multifunctional nanoprobe for breaking through the limits of cancer theranostics, and opened a new avenue for the development of high-relaxivity AMNs and multimodal imaging methodology.
Collapse
Affiliation(s)
- Ying An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weiwei Chen
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Kun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Wang Y, Wu M, Wang X, Wang P, Ning Z, Zeng Y, Liu X, Sun H, Zheng A. Biodegradable MnO 2-based gene-engineered nanocomposites for chemodynamic therapy and enhanced antitumor immunity. Mater Today Bio 2023; 18:100531. [PMID: 36619204 PMCID: PMC9812708 DOI: 10.1016/j.mtbio.2022.100531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Immune checkpoint blockade (ICB) is emerging as a promising therapeutic approach for clinical treatment against various cancers. However, ICB based monotherapies still suffer from low immune response rate due to the limited and exhausted tumor-infiltrating lymphocytes as well as tumor immunosuppressive microenvironment. In this work, the cell membrane with surface displaying PD-1 proteins (PD1-CM) was prepared for immune checkpoint blockade, which was further combined with multifunctional and biodegradable MnO2 for systematic and robust antitumor therapy. The MnO2-based gene-engineered nanocomposites can catalyze the decomposition of abundant H2O2 in TME to generate O2, which can promote the intratumoral infiltration of T cells, and thus improve the effect of immune checkpoint blockade by PD-1 proteins on PD1-CM. Furthermore, MnO2 in the nanocomposites can be completely degraded into Mn2+, which can catalyze the generation of highly toxic hydroxyl radicals for chemodynamic therapy, thereby further enhancing the therapeutic effect. In addition, the prepared nanocomposites possess the advantages of low cost, easy preparation and good biocompatibility, which are expected to become promising agents for combination immunotherapy.
Collapse
Affiliation(s)
- Yiru Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Xiaorong Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Zhaoyu Ning
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| |
Collapse
|
19
|
Zhang Z, Yan W, Ji Y. A novel manganese dioxide-based drug delivery strategy via in situ coating γ-polyglutamic acid/cisplatin for intelligent anticancer therapy. J Mater Chem B 2023; 11:667-674. [PMID: 36541339 DOI: 10.1039/d2tb01659a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cisplatin (CDDP) is one of the most frequently used chemotherapeutic drugs due to its broad-spectrum and potent antitumor activity. Unfortunately, inactivation due to glutathione (GSH) substances and insufficient cellular uptake of CDDP greatly hinder its clinical applications. Herein, manganese dioxide (MnO2) was reported as an efficient glutathione (GSH) consumption material for promoting the accumulation and preventing premature leakage of CDDP in tumor cells. In this work, γ-polyglutamic acid/cisplatin (PGA/CDDP) conjugates and PGA/CDDP nanoparticles (NPs) were respectively constructed via the ligand exchange reaction and electrostatic interaction. Furthermore, PGA/CDDP NPs were in situ coated with MnO2 (PGA/CDDP@MnO2 NPs) through the redox reaction of the residual carboxyl group (-COOH) and potassium permanganate (KMnO4). As a result, the PGA/CDDP@MnO2 NPs achieved a satisfactory drug-loading efficiency (ca. 37.26%) and multi-responsive controlled drug release. Remarkably, the MnO2 shells exhibited excellent performance for efficient glutathione (GSH) consumption and significantly enhanced the killing effect (ca. 2-3 times) in human lung cancer cells (A549) compared with pure CDDP. Moreover, it was observed that PGA/CDDP@MnO2 NPs could also inhibit the migration and invasion of A549 cells. Overall, these remarkable performances of PGA/CDDP@MnO2 NPs make MnO2 promising for controlled drug release and intelligent anticancer therapy.
Collapse
Affiliation(s)
- Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Weichen Yan
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
20
|
Zhang T, Hu C, Zhang W, Ruan Y, Ma Y, Chen D, Huang Y, Fan S, Lin W, Huang Y, Liao K, Lu H, Xu JF, Pi J, Guo X. Advances of MnO 2 nanomaterials as novel agonists for the development of cGAS-STING-mediated therapeutics. Front Immunol 2023; 14:1156239. [PMID: 37153576 PMCID: PMC10154562 DOI: 10.3389/fimmu.2023.1156239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
As an essential micronutrient, manganese plays an important role in the physiological process and immune process. In recent decades, cGAS-STING pathway, which can congenitally recognize exogenous and endogenous DNA for activation, has been widely reported to play critical roles in the innate immunity against some important diseases, such as infections and tumor. Manganese ion (Mn2+) has been recently proved to specifically bind with cGAS and activate cGAS-STING pathway as a potential cGAS agonist, however, is significantly restricted by the low stability of Mn2+ for further medical application. As one of the most stable forms of manganese, manganese dioxide (MnO2) nanomaterials have been reported to show multiple promising functions, such as drug delivery, anti-tumor and anti-infection activities. More importantly, MnO2 nanomaterials are also found to be a potential candidate as cGAS agonist by transforming into Mn2+, which indicates their potential for cGAS-STING regulations in different diseased conditions. In this review, we introduced the methods for the preparation of MnO2 nanomaterials as well as their biological activities. Moreover, we emphatically introduced the cGAS-STING pathway and discussed the detailed mechanisms of MnO2 nanomaterials for cGAS activation by converting into Mn2+. And we also discussed the application of MnO2 nanomaterials for disease treatment by regulating cGAS-STING pathway, which might benefit the future development of novel cGAS-STING targeted treatments based on MnO2 nanoplatforms.
Collapse
Affiliation(s)
- Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chunmiao Hu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongemi Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Jun-Fa Xu, ; Jiang Pi, ; Xinrong Guo,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Jun-Fa Xu, ; Jiang Pi, ; Xinrong Guo,
| | - Xinrong Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
- *Correspondence: Jun-Fa Xu, ; Jiang Pi, ; Xinrong Guo,
| |
Collapse
|
21
|
Zhang Y, Hu H, Deng X, Song Q, Xing X, Liu W, Zhang Y. Cascade-Enhanced Catalytic Nanocomposite with Glutathione Depletion and Respiration Inhibition for Effective Starving-Chemodynamic Therapy Against Hypoxic Tumor. Int J Nanomedicine 2022; 17:5491-5510. [DOI: 10.2147/ijn.s382750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022] Open
|
22
|
Xu Y, Tan W, Chen M, Chen S, Tang K, Liao H, Niu C. MnO 2 coated multi-layer nanoplatform for enhanced sonodynamic therapy and MR imaging of breast cancer. Front Bioeng Biotechnol 2022; 10:955127. [PMID: 36338124 PMCID: PMC9627152 DOI: 10.3389/fbioe.2022.955127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/10/2022] [Indexed: 11/14/2022] Open
Abstract
Sonodynamic therapy (SDT) is a promising new anti-tumor therapy that inhibits tumor growth by ultrasound activation of sonosensitizers to produce reactive oxygen species (ROS). However, the problems of hypoxia in the microenvironment within solid tumors and the effectiveness of SDT will decrease due to the little accumulation of sonosensitizers at the tumor site, as well as tumor cell tolerance, have limited the development of SDT. To overcome these problems, a core-shell structured nanoparticle (IR780/PLGA@MnO2 NPs) loaded with IR780 and manganese dioxide (MnO2) was developed as a nanocarrier to transport the sonosensitizer IR780 and the generated oxygen into the tumor tissue. The MnO2 shell layer of IR780/PLGA@MnO2 NPs can prevent the premature release of IR780 in the blood and also it can react with acidic and high H2O2, the generated oxygen can relieve tumor tissue hypoxia, and the generated Mn can enhance magnetic resonance imaging (MRI) signal intensity by acting as a contrast agent for MRI. More importantly, the released IR780 can produce ROS to kill tumor cells under ultrasound excitation. This PH-responsive and H2O2-triggered SDT based on the IR780/PLGA@MnO2NPs is an effective platform to inhibit tumor growth with negligible systemic toxicity. This work develops a multifunctional therapeutic integrated nanoplatform for breast cancer treatment, which is expected to be used in the clinic.
Collapse
Affiliation(s)
- Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanlin Tan
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kui Tang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiqin Liao
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Liu X, Kifle MT, Xie H, Xu L, Luo M, Li Y, Huang Z, Gong Y, Wu Y, Xie C. Biomineralized Manganese Oxide Nanoparticles Synergistically Relieve Tumor Hypoxia and Activate Immune Response with Radiotherapy in Non-Small Cell Lung Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183138. [PMID: 36144927 PMCID: PMC9501587 DOI: 10.3390/nano12183138] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 05/04/2023]
Abstract
Radiotherapy (RT) is currently considered as an essential treatment for non-small cell lung cancer (NSCLC); it can induce cell death directly and indirectly via promoting systemic immune responses. However, there still exist obstacles that affect the efficacy of RT such as tumor hypoxia and immunosuppressive tumor microenvironment (TME). Herein, we report that the biomineralized manganese oxide nanoparticles (Bio-MnO2 NPs) prepared by mild enzymatic reaction could be a promising candidate to synergistically enhance RT and RT-induced immune responses by relieving tumor hypoxia and activating cGAS-STING pathway. Bio-MnO2 NPs could convert endogenic H2O2 to O2 and catalyze the generation of reactive oxygen species so as to sensitize the radiosensitivity of NSCLC cells. Meanwhile, the release of Mn2+ into the TME significantly enhanced the cGAS-STING activity to activate radio-immune responses, boosting immunogenic cell death and increasing cytotoxic T cell infiltration. Collectively, this work presents the great promise of TME reversal with Bio-MnO2 NPs to collaborate RT-induced antitumor immune responses in NSCLC.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Meron Tsegay Kifle
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongxin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liexi Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Maoling Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yangyi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (Y.G.); (Y.W.); (C.X.)
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.G.); (Y.W.); (C.X.)
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
- Correspondence: (Y.G.); (Y.W.); (C.X.)
| |
Collapse
|
24
|
Song G, Zhang B, Song L, Li W, Liu C, Chen L, Liu A. MnCO 3@BSA-ICG nanoparticles as a magnetic resonance/photoacoustic dual-modal contrast agent for functional imaging of acute ischemic stroke. Biochem Biophys Res Commun 2022; 614:125-131. [PMID: 35580541 DOI: 10.1016/j.bbrc.2022.04.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Timely and accurate diagnosis of acute ischemic stroke (AIS) and simultaneous functional imaging of cerebral oxygen saturation (sO2) are essential to improve the survival rate of stroke patients but remains challenging. Herein, we developed a pH-responsive manganese (Mn)-based nanoplatform as a magnetic resonance/photoacoustic (MR/PA) dual-modal contrast agent for AIS diagnosis. The Mn-based nanoplatform was prepared via a simple and green biomimetic method using bovine serum albumin (BSA) as a scaffold for fabrication of MnCO3 NPs as the T1 MR contrast agent and accommodation of indocyanine green (ICG) as the PA probe. The obtained MnCO3@BSA-ICG NPs were biocompatible and exhibited a pH-responsive longitudinal relaxation rate and a concentration-dependent PA signal. In vivo MR/PA dual-modal imaging demonstrated that MnCO3@BSA-ICG NPs quickly and efficiently led to the MR/PA contrast enhancements in the infarcted area while not in the normal region, allowing a timely and accurate diagnosis of AIS. Moreover, PA imaging could directly monitor the sO2 level, enabling a functional imaging of AIS. Therefore, MnCO3@BSA-ICG NPs could be applied as a potential MR/PA contrast agent for timely and functional imaging of AIS.
Collapse
Affiliation(s)
- Guangrong Song
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Baorui Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Linyan Song
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Chuxuan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Leshan Chen
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Aihua Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China.
| |
Collapse
|
25
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
26
|
Sivasubramanian M, Lo LW. Assessment of Nanoparticle-Mediated Tumor Oxygen Modulation by Photoacoustic Imaging. BIOSENSORS 2022; 12:336. [PMID: 35624636 PMCID: PMC9138624 DOI: 10.3390/bios12050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Photoacoustic imaging (PAI) is an invaluable tool in biomedical imaging, as it provides anatomical and functional information in real time. Its ability to image at clinically relevant depths with high spatial resolution using endogenous tissues as contrast agents constitutes its major advantage. One of the most important applications of PAI is to quantify tissue oxygen saturation by measuring the differential absorption characteristics of oxy and deoxy Hb. Consequently, PAI can be utilized to monitor tumor-related hypoxia, which is a crucial factor in tumor microenvironments that has a strong influence on tumor invasiveness. Reactive oxygen species (ROS)-based therapies, such as photodynamic therapy, radiotherapy, and sonodynamic therapy, are oxygen-consuming, and tumor hypoxia is detrimental to their efficacy. Therefore, a persistent demand exists for agents that can supply oxygen to tumors for better ROS-based therapeutic outcomes. Among the various strategies, NP-mediated supplemental tumor oxygenation is especially encouraging due to its physio-chemical, tumor targeting, and theranostic properties. Here, we focus on NP-based tumor oxygenation, which includes NP as oxygen carriers and oxygen-generating strategies to alleviate hypoxia monitored by PAI. The information obtained from quantitative tumor oxygenation by PAI not only supports optimal therapeutic design but also serves as a highly effective tool to predict therapeutic outcomes.
Collapse
Affiliation(s)
| | - Leu-Wei Lo
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan;
| |
Collapse
|
27
|
Xu W, Qing X, Liu S, Yang D, Dong X, Zhang Y. Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106511. [PMID: 35043579 DOI: 10.1002/smll.202106511] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The precision, minimal invasiveness, and integration of diagnosis and treatment are critical factors for tumor treatment at the present. Although nanomedicine has shown the potential in tumor precision treatment, nanocarriers with high efficiency, excellent targeting, controlled release, and good biocompatibility still need to be further explored. Hollow mesoporous manganese oxides nanomaterials (HM-MONs), as an efficient drug delivery carrier, have attracted substantial attention in applications of tumor diagnosis and therapy due to their unique properties, such as tumor microenvironment stimuli-responsiveness, prominent catalytic activity, excellent biodegradation, and outstanding magnetic resonance imaging ability. The HM-MONs can not only enhance the therapeutic efficiency but also realize multimodal diagnosis of tumors. Consequently, it is necessary to introduce applications based on HM-MONs in cancer diagnosis and therapy. In this review, the representative progress of HM-MONs in synthesis is discussed. Then, several promising applications in drug delivery, bio-imaging, and bio-detection are highlighted. Finally, the challenges and perspectives of the anticancer applications are summarized, which is expected to provide meaningful guidance on further research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
28
|
Ye Q, Lin Y, Li R, Wang H, Dong C. Recent advances of nanodrug delivery system in the treatment of hematologic malignancies. Semin Cancer Biol 2022; 86:607-623. [PMID: 35339668 DOI: 10.1016/j.semcancer.2022.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
Although the survival rate of hematological malignancies (HM) has increased in recent years, the unnecessary adverse effect to the body is usually generated by the traditional chemotherapy for HM due to the lack of specificity to tumor tissue. Nanodrug delivery systems have exhibited unique advantages in targetability, stability and reducing toxicity, attracting wide concern, which is expected to be the prevalent alternative for the treatment of HM. In this review, we systemically introduced the current therapeutic strategies and the categories of HM. Subsequently, five key factors including circulation, targeting, penetration, internalization and release involving in tailoring nanoparticles were demonstrated, followed by the introduction of the development of nanodrug delivery-traditional synthetic nanomaterilas, biomimetic cell membrane coating nanomaterials, cell-based nanomaterials as well as immunotherapy combined with nanodrug. Afterwards, the recent advances of nanodrug delivery system for the treatment of HM were introduced. Moreover, the challenge and prospect of nanodrug delivery system in treating HM were discussed. The promising drug delivery system will provide new therapeutic avenues for the treatment of HM.
Collapse
Affiliation(s)
- Qianling Ye
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Yun Lin
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Ruihao Li
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Huaiji Wang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Chunyan Dong
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
29
|
Luo M, Lv Y, Luo X, Ren Q, Sun Z, Li T, Wang A, Liu Y, Yang C, Li X. Developing Smart Nanoparticles Responsive to the Tumor Micro-Environment for Enhanced Synergism of Thermo-Chemotherapy With PA/MR Bimodal Imaging. Front Bioeng Biotechnol 2022; 10:799610. [PMID: 35265592 PMCID: PMC8899915 DOI: 10.3389/fbioe.2022.799610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
With the development of nanotechnology, a theranostics nanoplatform can have broad applications in multimodal image-guided combination treatment in cancer precision medicine. To overcome the limitations of a single diagnostic imaging mode and a single chemotherapeutic approach, we intend to combat tumor growth and provide therapeutic interventions by integrating multimodal imaging capabilities and effective combination therapies on an advanced platform. So, we have constructed IO@MnO2@DOX (IMD) hybrid nanoparticles composed of superparamagnetic iron oxide (IO), manganese dioxide (MnO2), and doxorubicin (DOX). The nano-platform could achieve efficient T2-T1 magnetic resonance (MR) imaging, switchable photoacoustic (PA) imaging, and tumor microenvironment (TME)-responsive DOX release and achieve enhanced synergism of magnetic hyperthermia and chemotherapy with PA/MR bimodal imaging. The results show that IMD has excellent heating properties when exposed to an alternating magnetic field (AMF). Therefore, it can be used as an inducer for tumor synergism therapy with chemotherapy and hyperthermia. In the TME, the IMD nanoparticle was degraded, accompanied by DOX release. Moreover, in vivo experimental results show that the smart nanoparticles had excellent T2-T1 MR and PA imaging capabilities and an excellent synergistic effect of magnetic hyperthermia and chemotherapy. IMD nanoparticles could significantly inhibit tumor growth in tumor-bearing mice with negligible side effects. In conclusion, smart IMD nanoparticles have the potential for tumor diagnosis and growth inhibition as integrated diagnostic nanoprobes.
Collapse
Affiliation(s)
- Mingfang Luo
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xunrong Luo
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qingfa Ren
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Zhenbo Sun
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianping Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Caixia Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
30
|
Xu W, Qing X, Liu S, Chen Z, Zhang Y. Manganese oxide nanomaterials for bacterial infection detection and therapy. J Mater Chem B 2022; 10:1343-1358. [PMID: 35129557 DOI: 10.1039/d1tb02646a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infection has received substantial attention and poses a serious threat to human health. Although antibiotics can effectively fight against bacterial infection, the occurrence of antibiotic resistance has become increasingly serious in recent years, which tremendously hinders its clinical application. Consequently, it is urgent to explore novel strategies to achieve efficacious treatment of bacterial diagnosis and detection. Manganese dioxide (MnO2) nanomaterial has been extensively reported in tumor therapy. Nevertheless, there are few antibacterial reviews of MnO2. Herein, we will discuss the applications of MnO2 in the detection and treatment of bacterial infection, including photodynamic therapy, immunotherapy, improvement of hypoxia, dual-modal combination therapy, reactive oxygen species scavenging, magnetic resonance imaging, optical application of acoustic imaging, and so forth. This review is expected to provide meaningful guidance on further research of MnO2 nanomaterial for antibacterial applications.
Collapse
Affiliation(s)
- Wenjing Xu
- Medical School, Southeast University, Nanjing 210009, China.
| | - Xin Qing
- Medical School, Southeast University, Nanjing 210009, China.
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Zhencheng Chen
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Yewei Zhang
- Medical School, Southeast University, Nanjing 210009, China. .,Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 246] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
32
|
Tang L, Zhang A, Zhang Z, Zhao Q, Li J, Mei Y, Yin Y, Wang W. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Commun (Lond) 2022; 42:141-163. [PMID: 35001556 PMCID: PMC8822595 DOI: 10.1002/cac2.12255] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/24/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Phototherapy and immunotherapy in combination is regarded as the ideal therapeutic modality to treat both primary and metastatic tumors. Immunotherapy uses different immunological approaches to stimulate the immune system to identify tumor cells for targeted elimination. Phototherapy destroys the primary tumors by light irradiation, which induces a series of immune responses through triggering immunogenic cancer cell death. Therefore, when integrating immunotherapy with phototherapy, a novel anti-cancer strategy called photoimmunotherapy (PIT) is emerging. This synergistic treatment modality can not only enhance the effectiveness of both therapies but also overcome their inherent limitations, opening a new era for the current anti-cancer therapy. Recently, the advancement of nanomaterials affords a platform for PIT. From all these nanomaterials, inorganic nanomaterials stand out as ideal mediators in PIT due to their unique physiochemical properties. Inorganic nanomaterials can not only serve as carriers to transport immunomodulatory agents in immunotherapy owing to their excellent drug-loading capacity but also function as photothermal agents or photosensitizers in phototherapy because of their great optical characteristics. In this review, the recent advances of multifunctional inorganic nanomaterial-mediated drug delivery and their contributions to cancer PIT will be highlighted.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
33
|
Chen T, Xu S, Huang W, Yan D. Light-responsive nanodrugs co-self-assembled from a PEG-Pt(IV) prodrug and doxorubicin for reversing multi-drug resistance in the chemotherapy process of hypoxic solid tumors. Biomater Sci 2022; 10:3901-3910. [DOI: 10.1039/d2bm00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypoxia-induced multidrug resistance (MDR) often develops in the chemotherapy process of most anticancer drugs (e.g., doxorubicin, DOX) and results in the treatment failure in clinic. Herein, a PEG-Pt(IV) prodrug...
Collapse
|
34
|
Li M, Xiao M, Pan Q, Xiong J. Multifunctional nanoplatform based on g-C 3N 4, loaded with MnO 2 and CuS nanoparticals for oxygen self-generation photodynamic/photothermal synergistic therapy. Photodiagnosis Photodyn Ther 2021; 37:102684. [PMID: 34923155 DOI: 10.1016/j.pdpdt.2021.102684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are both promising therapeutic approaches for cancer. Unfortunately, the anticancer efficiency of PDT is restricted by the hypoxic tumor microenvironment and the performance of the photosensitizer (PS) while the efficiency of PTT is limited by the penetration depth of NIR light, making it difficult to further improve the efficiency of the treatment. In this paper, we strategically proposed a multifunctional nano-platform based on g-C3N4 and loaded with CuS and MnO2 nanoparticals. Interestingly, the obtained F127@CNs-CuS/MnO2 nano-platform with high singlet oxygen quantum yield and excellent photothermal performance were used in synergistic PTT and PDT therapy to cope with the limitation of single mode cancer treatment under irradiation and has greatly improved the treatment effect. Additionally, MnO2 nanoparticles loaded on the CNs surface could not only generate oxygen to ameliorate hypoxia in the tumor environment by reacting with H2O2 in tumor cells, but also react with the over-expressed reduced glutathione (GSH) in cancer cells to further improve the synergistic therapeutic effect. In the in vitro hepatocarcinoma cell inactivation experiment, the maximum cell inactivation efficiency of the PDT, PTT and PDT/PTT synergistic treatment group reached at 65% (F127@CNs-MnO2), 69.2% (CNs-MnO2) and 88.6% (F127@CNs-MnO2) respectively, which means that the F127@CNs-CuS/MnO2-mediated PTT/PDT synergy anticancer treatment was more effective than single mode therapy. In summary, the innovative multifunctional nanoplatform F127@CNs-CuS/MnO2 used for synergistic PTT and PDT treatment has greatly improved the inactivation efficiency of cancer cells and has provided a new scheme for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Mucang Xiao
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Qilin Pan
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
| | - Jianwen Xiong
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Zhang Z, Ji Y, Lin C, Tao L. Thermosensitive hydrogel-functionalized gold nanorod/mesoporous MnO 2 nanoparticles for tumor cell-triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112504. [PMID: 34857290 DOI: 10.1016/j.msec.2021.112504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
MnO2 owns distinct redox, imaging, and degradable properties corresponding to the tumor microenvironment. However, the onefold structure and non-modifiable property cause many obstacles to anticancer applications. In this report, we first prepared a typical core-shell gold nanorod (GNR)/manganese dioxide (MnO2) nanoparticles (GNR/MnO2 NPs). Interestingly, the MnO2 had a mesoporous channel and modifiable hydroxyl group (OH). Here, the unique 'OH' groups were modified and further grafted with poly(N-isopropylacrylamide-co-acrylic acid) (PNA). As a dual-sensitive hydrogel, it was selected as the thermal/pH-sensitive component in the hybrid nanoparticles (GNR/MnO2/PNA NPs). The anticancer drug doxorubicin hydrochloride (DOX) was selected and loaded into the hybrid nanoparticles (GNR/MnO2/PNA-DOX NPs). The GNR/MnO2/PNA NPs achieved satisfying drug-loading efficiency and glutathione (GSH)/pH/thermal-responsive drug-controlled release. As a side benefit, the GNR/MnO2/PNA NPs showed potential as excellent near-infrared (NIR)-excited nanoplatforms for photothermal therapy (PTT). Delightedly, the studies demonstrated that the GNR/MnO2/PNA-DOX NPs showed a noticeable killing effect on tumor cells, whether it is tumor cell-triggered drug release or photothermal effect. Besides, it not only could enhance mitochondrial damage but also could inhibit the migration and invasion of tumor cells. Quite the reverse, it had little negative impact on normal cells. The feature can prevent anticancer drugs and nanoparticles from killing normal cells. Consequently, GNR/MnO2/PNA NPs have potential applications in drug delivery and synergistic therapy due to these advantageous features.
Collapse
Affiliation(s)
- Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Li Tao
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
36
|
Deng X, Song Q, Zhang Y, Liu W, Hu H, Zhang Y. Tumour microenvironment-responsive nanoplatform based on biodegradable liposome-coated hollow MnO 2 for synergistically enhanced chemotherapy and photodynamic therapy. J Drug Target 2021; 30:334-347. [PMID: 34709119 DOI: 10.1080/1061186x.2021.1999961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Existing therapeutic efficacy of chemotherapy and photodynamic therapy (PDT) is always affected by some resistance factors from tumour environment (TME), such as hypoxia and the antioxidant defense system. PURPOSE This study aims at developing a cascaded intelligent multifunctional nanoplatforms to modulate the TME resistance for synergistically enhanced chemo- and photodynamic therapies. METHODS In this study, we synthesised hollow manganese dioxide nanoparticles (HMDNs) loaded with the hydrophilic chemotherapeutic drug (acriflavine, ACF) and the hydrophobic photosensitizer (chlorine6, Ce6), which was further encapsulated by pH-sensitive liposome to form core-shell nanocomposite, with surface modified with arginine-glycine-aspartic acid (RGD) peptide to achieve tumour targeting. RESULTS After uptake by tumour cells, the liposome shell was rapidly degraded by the low pH, and the inner core could be released from the liposome. Then, the released HMDNs/ACF/Ce6 would be dissociated by low pH and high levels of intracellular GSH within TME to release encapsulated drugs, thereby resulting in synergistic effects of chemotherapy and PDT. Meanwhile, the released ACF could bind with HIF-1a and then inhibit the expression levels of HIF-1's downstream signalling molecules P-gp and VEGF, which could further strengthen the antitumor effects. As a result, HMDNs/ACF/Ce6@Lipo-RGD NPs with laser irradiation exhibited superior anti-tumour therapeutic efficiency.
Collapse
Affiliation(s)
- Xiangtian Deng
- School of Medicine, Nankai University, Tianjin, China.,Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, China
| | - Qingcheng Song
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, China
| | - Yiran Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingze Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, China
| |
Collapse
|
37
|
Hao D, Zhang Z, Ji Y. Responsive polymeric drug delivery systems for combination anticancer therapy: experimental design and computational insights. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dule Hao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
38
|
Zheng Y, Zhang X, Su Z. Design of metal-organic framework composites in anti-cancer therapies. NANOSCALE 2021; 13:12102-12118. [PMID: 34236380 DOI: 10.1039/d1nr02581c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks are a class of new and promising anti-cancer materials. MOFs with adjustable pore size, large specific surface area, diverse structure, and excellent chemical and physical properties make them a class of effective protection carriers for anti-cancer substances. This review is centered on the core point of "anti-cancer" and discusses MOFs' research progress in anti-cancer therapies. Firstly, we provided readers with the different types of MOFs, their preparation strategies and the resulting structures. Then, different MOF composites and their biological applications were systematically presented. The specificity of biomolecules endows MOFs with broader anti-cancer applications, while MOFs can protect the drugs and biomolecules to make the best of a challenging situation. Finally, we elucidated a comprehensive overview of the biological applications of MOFs, including research hotspots as drug delivery and biomolecule carriers. Besides, we looked forward to the future developments of MOFs in the field of anti-cancer therapies. As a class of novel materials, the anti-cancer applications of MOFs are extended through the combination of different materials and different methods to improve their efficacy.
Collapse
Affiliation(s)
- Yadan Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | | | | |
Collapse
|
39
|
Xu Z, Li M, Sun R, Chu B, Song B, Wang H, Su Y, He Y. Nanoparticles as a Hedgehog signaling inhibitor for the suppression of cancer growth and metastasis. NANOSCALE 2021; 13:11077-11085. [PMID: 34137761 DOI: 10.1039/d1nr02157e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticles (NPs) have been intensively explored for the treatment of tumors during the past decade, yet little information has been provided on the NPs' inherent therapeutic activity against cancers. With this goal in mind, we reveal that biocompatible silicon (Si) NPs (SiNPs) feature excellent anti-growth and anti-metastasis activities against prostate cancer cells that show aberrant activation of the Hedgehog (HH) signaling pathway. Without activation by the Sonic hedgehog (Shh)-agonist, mouse embryonic fibroblast (NIH3T3) cells show no response to SiNP exposure. The distinct inhibitory effect of SiNPs on the HH signaling pathway leads to significant suppression of the proliferation, migration, and invasion of human prostate cancer cells. Crucially, in two mouse tumor models, the growth and metastasis of prostate cancer cells are also efficiently inhibited by SiNPs.
Collapse
Affiliation(s)
- Zhaojian Xu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Manjing Li
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Rong Sun
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Yuanyuan Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
40
|
Hou W, Jiang Y, Xie G, Zhao L, Zhao F, Zhang X, Sun SK, Yu C, Pan J. Biocompatible BSA-MnO 2 nanoparticles for in vivo timely permeability imaging of blood-brain barrier and prediction of hemorrhage transformation in acute ischemic stroke. NANOSCALE 2021; 13:8531-8542. [PMID: 33908561 DOI: 10.1039/d1nr02015c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hemorrhage transformation (HT) is a frequent but maybe fatal complication following acute ischemic stroke due to severe damage of the blood-brain barrier (BBB). Quantitative BBB permeability imaging is a promising method to predict HT in stroke patients for a favorable prognosis. However, clinical gadolinium chelate-based magnetic resonance (MR) imaging of the stroke suffers from a relatively low sensitivity and potential side effects of nephrogenic systemic fibrosis and intracranial gadolinium deposition. Herein, BSA-MnO2 nanoparticles (BM NPs) fabricated by a facile disinfection-mimic method were employed for the permeability imaging of BBB in the stroke for the first time. The BM NPs showed a high T1 relaxivity (r1 = 5.9 mM-1 s-1), remarkable MR imaging ability, and good biocompatibility, allowing the noninvasive timely visualization of BBB permeability in the model rats of middle cerebral artery occlusion (MCAO). Furthermore, increased peak intensity, extended imaging duration, and expanded imaging region indicated by BM NPs in MR imaging showed a good prediction for the onset of HT in MCAO rats. Therefore, BM NPs hold an attractive potential to be an alternative biocompatible MR contrast agent for the noninvasive BBB permeability imaging in vivo, benefiting the fundamental research of diverse neurological disorders and the clinical treatment for stroke patients.
Collapse
Affiliation(s)
- Wenjing Hou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yingzong Jiang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Guangchao Xie
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Lu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Fangshi Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China. and School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
41
|
Kang W, Ji Y, Cheng Y. Van der Waals force-driven indomethacin-ss-paclitaxel nanodrugs for reversing multidrug resistance and enhancing NSCLC therapy. Int J Pharm 2021; 603:120691. [PMID: 33965541 DOI: 10.1016/j.ijpharm.2021.120691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
The high expression of multidrug resistance-associated protein 1 (MRP1) in cancer cells caused serious multidrug resistance (MDR), which limited the effectiveness of paclitaxel (PTX) in non-small cell lung cancer (NSCLC) chemotherapy. Indomethacin (IND), a kind of non-steroidal anti-inflammatory drugs (NSAIDs), which has been confirmed to be a potential MRP1 inhibitor. Taking into account the advantages of old drugs without extra controversial biosafety issue, in this manuscript, the disulfide bond (-S-S-) was employed for connecting IND and PTX to construct conjugate IND-S-S-PTX, which was further self-assembled and formed nanodrug (IND-S-S-PTX NPs). The particle size of IND-S-S-PTX NPs was ~160 nm with a narrow PDI value of 0.099, which distributed well in water and also exhibited a stable characteristic. Moreover, due to the existence of disulfide bond, the NPs were sensitive to the high level of glutathione (GSH) in tumor microenvironment. Molecular dynamics (MD) simulation presented the process of self-assembly in detail. Density functional theory (DFT) calculations revealed that the main driving force in self-assembly process was originated from the van der waals force. In addition, this carrier-free nano drug delivery systems (nDDs) could reverse the MDR by downregulating the expression of MRP1 protein in A549/taxol.
Collapse
Affiliation(s)
- Wenbo Kang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Yu Cheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
42
|
Chen L, Tiwari SR, Zhang Y, Zhang J, Sun Y. Facile Synthesis of Hollow MnO 2 Nanoparticles for Reactive Oxygen Species Scavenging in Osteoarthritis. ACS Biomater Sci Eng 2021; 7:1686-1692. [PMID: 33787210 DOI: 10.1021/acsbiomaterials.1c00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disease whose molecular mechanism has not been revealed clearly, and there is still no effective approach to cure OA completely. Recently, reactive oxygen species (ROS) are exposed as an important mediator of OA's inflammatory response, and it has been regarded as a therapeutic target for OA treatment. MnO2 nanoparticles possess good biocompatibility and can act as an artificial nanoenzyme to scavenge ROS in various diseases effectively. In this study, the modified Stöber method was applied to synthesize hollow MnO2 (H-MnO2) and H-MnO2 was modified with NH2-PEG-NH2, which possesses excellent biological stability and biocompatibility. It induced a change in the articular cartilage structure changes in vivo, with the knee tissue staining and micro-CT scanning of the whole knee suggesting that H-MnO2 nanoparticles could effectively remove ROS and significantly relieve the inflammatory response of OA without obvious side effects. This study reveals the therapeutic effects of MnO2-based nanomedicine toward OA, which provides potential alternative therapeutic options for patients with inflammation tissue.
Collapse
Affiliation(s)
- Lei Chen
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Shashi Ranjan Tiwari
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Yingqi Zhang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Jincheng Zhang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Yeqing Sun
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| |
Collapse
|
43
|
Zhang L, Yang Z, He W, Ren J, Wong CY. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy. J Colloid Interface Sci 2021; 599:543-555. [PMID: 33964699 DOI: 10.1016/j.jcis.2021.03.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) have attracted a great deal of interest, but tumor hypoxia and glutathione (GSH) overproduction still limit their further applications. Herein, an intelligent reactive oxygen species (ROS) nanogenerator Ce6/GOx@ZIF-8/PDA@MnO2 (denoted as CGZPM; Ce6, GOx, ZIF-8, PDA, MnO2 are chlorin e6, glucose oxidase, zeolitic imidazolate framework-8, polydopamine and manganese dioxide respectively) with O2-generating and GSH-/glucose-depleting abilities was constructed by a facile and green one-pot method. After intake by tumor cells, the outer MnO2 was rapidly degraded by the acidic pH, and the overexpression of hydrogen peroxide (H2O2) and GSH with abundant Mn2+ and O2 produced would eventually achieve multifunctionality. The Mn2+ acted as an ideal Fenton-like agent and magnetic resonance (MR) imaging contrast agent, while the O2 promoted the PDT via hypoxia relief and facilitated the intratumoral glucose oxidation by GOx for starvation therapy (ST). Benefiting from the GOx-based glycolysis process, sufficient H2O2 was generated to improve the CDT efficacy through Mn2+-mediated Fenton-like reaction. Notably, MnO2 and PDA could decrease the tumor antioxidant activity by consuming GSH, resulting in remarkably enhanced PDT/CDT. Such a novel cascade bioreactor with tumor microenvironment (TME)-modulating capability opens new opportunities for ROS-based and combinational treatment paradigms.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Wenshan He
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
44
|
Fan S, Zhang Y, Tan H, Xue C, He Y, Wei X, Zha Y, Niu J, Liu Y, Cheng Y, Cui D. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. NANOSCALE 2021; 13:5383-5399. [PMID: 33666213 DOI: 10.1039/d0nr08831e] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early diagnosis of tumors is crucial in selecting appropriate treatment options to achieve the desired therapeutic effect, but it is difficult to accurately diagnose cancer by a single imaging modality due to technical constraints. Therefore, we synthesized a type of Fe3O4 nanoparticle with manganese dioxide grown on the surface and then prepared it by loading photosensitive drugs and traditional Chinese medicine monomers to create an integrated diagnosis/treatment multifunctional nanoplatform: Fe3O4@MnO2-celastrol (CSL)/Ce6. This nanoplatform can have full advantage of the tumor microenvironment (TME) characteristics of hypoxia (hypoxia), acidic pH (acidosis), and increased levels of reactive oxygen species (e.g., H2O2), even outside the TME. Specific imaging and drug release can also enhance tumor therapy by adjusting the hypoxic state of the TME to achieve the combined effect of chemotherapy (CT) and photodynamic therapy (PDT). Moreover, the obtained Fe3O4@MnO2-CSL/Ce6 has H2O2- and pH-sensitive biodegradation and can release the anticancer drug celastrol (CSL) and photosensitizer Ce6 in TME and simultaneously generate O2 and Mn2+. Therefore, the "dual response" synergistic strategy also confers specific drug release on nanomaterials, relieves tumor hypoxia and antioxidant capacity, and achieves significant optimization of CT and PDT. Furthermore, the resulting Mn2+ ions and Fe3O4 nanoparticles can be used for T1/T2 magnetic resonance imaging on tumor-bearing mice, and the released Ce6 can simultaneously provide fluorescence imaging functions. Therefore, Fe3O4@MnO2-CSL/Ce6 realized the synergistic treatment of PDT and CT under multimodal near-infrared fluorescence/photoacoustic (photoacoustic) imaging monitoring, showing its great potential in the accurate medical treatment of tumors.
Collapse
Affiliation(s)
- Shanshan Fan
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.
| | - Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huanshan Road, Shanghai 200030, P.R. China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200011, P.R. China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yu He
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiangyu Wei
- Department of Radiology, Shu Guang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiqian Zha
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yingsheng Cheng
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China. and Shanghai University of Medicine and Health Sciences, Shanghai 201318 and P.R. China; Shanghai Fengxian District Central Hospital; Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201400, P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| |
Collapse
|
45
|
Gao Y, Yin Z, Ji Q, Jiang J, Tao Z, Zhao X, Sun S, Wu A, Zeng L. Black titanium dioxide@manganese dioxide for glutathione-responsive MR imaging and enhanced photothermal therapy. J Mater Chem B 2021; 9:314-321. [PMID: 33305301 DOI: 10.1039/d0tb02514c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multifunctional nanoprobes with tumor microenvironment response are playing important roles in highly efficient theranostics of cancers. Herein, a kind of theranostic nanoprobe was synthesized by coating manganese dioxide (MnO2) on the surface of black commercial P25 titanium dioxide (b-P25). The resultant nanoprobe (b-P25@MnO2) possessed glutathione (GSH)-responsive magnetic resonance (MR) imaging and enhanced photothermal therapy (PTT). In tumor microenvironments, the excessive GSH was consumed by reacting with MnO2 to generate Mn2+ for GSH-responsive MR imaging, in which the longitudinal relaxation rate of b-P25@MnO2 was up to 30.44 mM-1 s-1, showing excellent cellular and intratumoral MR imaging. Moreover, the prepared b-P25@MnO2 exhibited stable and strong photothermal conversion capability with a high photothermal conversion efficiency of 30.67%, by which the 4T1 tumors disappeared completely, indicating safe and highly efficient PTT performance. The current work developed GSH-responsive b-P25@MnO2 nanoprobes, demonstrated for MR imaging and enhanced PTT in cancers.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China. and Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Zhibin Yin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| | - Qian Ji
- Department of Radiology, Tianjin First Central Hospital, First Central Clinical College of Tianjin Medical University, Tianjin, 300192, P. R. China.
| | - Jiabing Jiang
- Department of Radiology, Tianjin First Central Hospital, First Central Clinical College of Tianjin Medical University, Tianjin, 300192, P. R. China.
| | - Zhengzheng Tao
- Department of Radiology, Tianjin First Central Hospital, First Central Clinical College of Tianjin Medical University, Tianjin, 300192, P. R. China.
| | - Xiaolong Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| | - Sijia Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|