1
|
Wei RJ, Luo X, Ning GH, Li D. Covalent Metal-Organic Frameworks: Fusion of Covalent Organic Frameworks and Metal-Organic Frameworks. Acc Chem Res 2025. [PMID: 39982167 DOI: 10.1021/acs.accounts.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
ConspectusMetal-organic frameworks (MOFs) and covalent organic frameworks (COFs), as emerging porous crystalline materials, have attracted remarkable attention in chemistry, physics, and materials science. MOFs are constructed by metal clusters (or ions) and organic linkers through coordination bonds, while COFs are prepared by pure organic building blocks via covalent bonds. Because of the nature of linkages, MOFs and COFs have their own shortcomings. Typically, the relatively weak bond strengths of coordination bonds lead to poor chemical stability of MOFs, which limits their practical implementations. On the other hand, due to the strong covalent bonds, COFs exhibit rather higher stability under harsh conditions, compared to MOFs. However, the lack of open metal sites restricts their functionalization and application. Therefore, it is hypothesized that the "cream-skimming" of MOFs and COFs would address these drawbacks and produce a new class of crystalline porous material, namely, covalent metal-organic frameworks (CMOFs), with unprecedented structural complexity and advanced functionality. The CMOFs reveal a new synthetic approach for the preparation of reticular materials. Specifically, metal ions are reacted with chelating ligands to assemble metal complexes or clusters with functional reactive sites (e.g., -CHO, and -NH2), which can be further connected with organic linkers to form networked structures via dynamic covalent chemistry (DCC). The isolated metal complex or cluster precursors show enhanced stability which prevents structural decomposition and rearrangements during the self-assembly process of CMOFs. Since the topology of preassembled metal nodes is well-defined, the CMOFs structure can be readily predicted upon directed networking of covalent bonds. Unaccessible reticular materials from unstable or highly reactive metal ion/clusters under traditional conditions can be prepared via the DCC approach. Moreover, CMOFs synergize the advantages of MOFs and COFs, containing metal active sites ensuring various interesting properties, and covalent linkages that allow rather high chemical stability even under harsh conditions. In the past few years, our group has specifically focused on the development of general synthetic strategies for CMOFs by networking coinage metal (Cu, Ag, and Au)-based cyclic trinuclear units (CTUs) with DCC. The CTUs exhibit trigonal planar structures and can be functionalized with reactive sites, such as -NH2 and -CHO, that can further react with organic linkers to afford CMOFs. Notably, CTUs also features interesting properties including metallophilic attraction, π-acidity/basicity, luminescence, redox activity and catalytic activity, which can be incorporated into CMOFs. Therefore, we envision that CMOFs would be promising platforms not only for the development of novel reticular materials, but also for potential applications in many research fields including gas absorption/separation, sensing, full-color display, catalysis, energy, and biological applications. In this Account, we summarize the recent studies on CMOFs, starting with linkage and topological design, structural transformation, morphological control, and potential applications in various fields. We also discuss the future opportunities and challenges in this rapidly developed research field of CMOFs. We hope this Account may promote new scientific discoveries and further development of CMOF-based materials and technologies in the future.
Collapse
Affiliation(s)
- Rong-Jia Wei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiao Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Nam D, Albalad J, Sánchez-Naya R, Ruiz-Relaño S, Cortés-Martínez A, Yang Y, Juanhuix J, Imaz I, Maspoch D. Isolation of the Secondary Building Unit of a 3D Metal-Organic Framework through Clip-Off Chemistry, and Its Reuse To Synthesize New Frameworks by Dynamic Covalent Chemistry. J Am Chem Soc 2024; 146:27255-27261. [PMID: 39348446 PMCID: PMC11468772 DOI: 10.1021/jacs.4c09077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Herein, we present a novel methodology for synthesizing metal clusters or secondary building units (SBUs) that are subsequently employed to construct innovative metal-organic frameworks (MOFs) via dynamic covalent chemistry. Our approach entails extraction of SBUs from preformed MOFs through complete disassembly by clip-off chemistry. The initial MOF precursor is designed to incorporate the desired SBU, connected exclusively by cleavable linkers (in this study, with olefinic bonds). Cleavage of all the organic linkers (in this study, via ozonolysis under reductive conditions) liberates the SBUs functionalized with aldehyde groups. Once synthesized, these SBUs can be further reacted with amines in dynamic covalent chemistry to build new, rationally designed MOFs.
Collapse
Affiliation(s)
- Dongsik Nam
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona
Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department
of Chemistry, Autonomous University of Barcelona
(UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jorge Albalad
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona
Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department
of Chemistry, Autonomous University of Barcelona
(UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Roberto Sánchez-Naya
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona
Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department
of Chemistry, Autonomous University of Barcelona
(UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Sara Ruiz-Relaño
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona
Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department
of Chemistry, Autonomous University of Barcelona
(UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Alba Cortés-Martínez
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona
Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department
of Chemistry, Autonomous University of Barcelona
(UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Yunhui Yang
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona
Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department
of Chemistry, Autonomous University of Barcelona
(UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Judith Juanhuix
- Alba
Synchrotron Light Facility, Cerdanyola
del Vallès, 08290 Barcelona, Spain
| | - Inhar Imaz
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona
Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department
of Chemistry, Autonomous University of Barcelona
(UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona
Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department
of Chemistry, Autonomous University of Barcelona
(UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Xue R, Liu Y, Wu X, Lv Y, Guo J, Yang GY. Covalent Organic Frameworks Meet Titanium Oxide. ACS NANO 2024. [PMID: 39028766 DOI: 10.1021/acsnano.4c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In order to expand the applicability of materials and improve their performance, the combined use of different materials has increasingly been explored. Among these materials, inorganic-organic hybrid materials often exhibit properties superior to those of single materials. Covalent organic frameworks (COFs) are famous crystalline porous materials constructed by organic building blocks linked by covalent bonds. In recent years, the combination of COFs with other materials has shown interesting properties in diverse fields, and the composite materials of COFs and TiO2 have been investigated more and more. These two outstanding materials are combined through covalent bonding, physical mixing, and other methods and exhibit excellent performance in various fields, including photocatalysis, electrocatalysis, sensors, separation, and energy storage and conversion. In this Review, the current preparation methods and applications of COF-TiO2 hybrid materials are introduced in detail, and their future development and possible problems are discussed and prospected, which is of great significance for related research. It is believed that these interesting hybrid materials will show greater application value as research progresses.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yinsheng Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
5
|
Li AJ, Huang SL, Yang GY. Anderson-type polyoxometalates for catalytic applications. Dalton Trans 2023. [PMID: 37997776 DOI: 10.1039/d3dt03274d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Anderson-type polyoxometalates have exhibited remarkable catalytic capabilities in a wide range of reactions. This discourse delves into the distinct categories of Anderson POMs and their respective catalytic reactions, which are examined in separate segments. These encompass the straightforward {XMo6} POMs, the organic grafting {XMo6} POMs, and the integration of POMs into POM cluster organic frameworks. It is important to highlight that specific catalytic functionalities can solely be accomplished via the utilization of Anderson-type POMs, thus emphasizing their indispensable role in future explorations.
Collapse
Affiliation(s)
- Ai-Juan Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
6
|
Xue R, Liu YS, Wang MY, Guo H, Yang W, Yang GY. Combination of covalent organic frameworks (COFs) and polyoxometalates (POMs): the preparation strategy and potential application of COF-POM hybrids. MATERIALS HORIZONS 2023; 10:4710-4723. [PMID: 37622235 DOI: 10.1039/d3mh00906h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Both covalent organic frameworks (COFs) and polyoxometalates (POMs) show excellent properties and application potential in many fields, thus receiving widespread attention. In recent years, COF-POM hybrid materials were prepared by combining COFs and POMs through physical or chemical methods. COF-POM hybrids have shown high performance in many fields, such as catalysis, sensing, energy storage, and biomedicine. In this review, we introduced the preparation strategy and application of COF-POM hybrids in detail. We believe that the combination of COFs and POMs will provide more abundant functions and broad application prospects.
Collapse
Affiliation(s)
- Rui Xue
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Yin-Sheng Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ming-Yue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
7
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Chen X, Wu H, Shi X, Wu L. Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. NANOSCALE 2023. [PMID: 37158109 DOI: 10.1039/d3nr01176c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polyoxometalate-based frameworks (POM-based frameworks) are extended structures assembled from metal-oxide cluster units and organic frameworks that simultaneously possess the virtues of POMs and frameworks. They have been attracting immense attention because of their diverse architectures and charming topologies and also due to their probable application prospects in the areas of catalysis, separation, and energy storage. In this review, the recent progress in POM-based frameworks including POM-based metal organic frameworks (PMOFs), POM-based covalent organic frameworks (PCOFs), and POM-based supramolecular frameworks (PSFs) is systematically summarized. The design and construction of a POM-based framework and its application in photocatalysis and photothermal catalysis are introduced, respectively. Finally, our brief outlooks on the current challenges and future development of POM-based frameworks for photocatalysis and photothermal catalysis are provided.
Collapse
Affiliation(s)
- Xiaofei Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Hongzhuo Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Xinjian Shi
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Cai S, Wu XY, Wu W, Wang SS, Lu CZ. Synergic catalysis of W and Ni originating from substitution of trivacant phosphotungstate for the selective oxidation of aniline to azoxybenzene. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
11
|
Platinum Nanoclusters Uniformly Dispersed on Covalent Organic Framework Supports for Selective Synthesis of Secondary Amines. ChemCatChem 2021. [DOI: 10.1002/cctc.202101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
You P, Wei R, Ning G, Li D. An Eosin Y Encapsulated Cu(I) Covalent Metal Organic Framework for Efficient Photocatalytic Sonogashira Cross-coupling Reaction. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Deng Y, Wang Y, Chen Y, Zhang Z. Strategies for Improving the Catalytic Performance of 2D Covalent Organic Frameworks for Hydrogen Evolution and Oxygen Evolution Reactions. Chem Asian J 2021; 16:1851-1863. [PMID: 34002483 DOI: 10.1002/asia.202100357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/12/2021] [Indexed: 11/11/2022]
Abstract
Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have been deemed as clean and sustainable strategies to solve the energy crisis and environmental problems. Various catalysts have been developed to promote the process of HER and OER. Among them, two-dimensional covalent organic frameworks (2D COFs) have received great attention due to their diverse and designable structure. In this minireview, we mainly summarize the diverse linkages of 2D COFs and strategies for enhancing the catalytic performance of 2D COFs for HER and OER, such as introducing active building blocks, metal ions and tailored linkages. Furthermore, a brief outlook for the development directions of COFs in the field of HER and OER is provided, expecting to stimulate new opportunities in future research.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/ Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
14
|
Wu P, Wang Y, Huang B, Xiao Z. Anderson-type polyoxometalates: from structures to functions. NANOSCALE 2021; 13:7119-7133. [PMID: 33889922 DOI: 10.1039/d1nr00397f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anderson-type polyoxometalates (POMs) are one of the most important groups of the POM family. In the past decade, the functionalization of Anderson-type POMs has achieved significant progress and these materials have already shown unique charm in catalysis, molecular devices, energy materials, and inorganic biochemical drugs. In particular, their highly flexible topological structure and diverse functionalization methods make them the most convenient and universal platforms for rational design and controllable synthesis. This review provides a deep discussion on the recent progress in the synthetic methodology, structural exploration, and promising applications of Anderson-type POMs. It also summarizes the latest research directions and provides future prospects.
Collapse
Affiliation(s)
- Pingfan Wu
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | |
Collapse
|
15
|
Zhang B, Ying J, Zhang X, Wang C, Tian A. Electrocatalytic, photocatalytic, fluorescence sensing and CO 2RR properties of a series of homopolymolybdate hybrid coordination polymers. NEW J CHEM 2021. [DOI: 10.1039/d1nj02283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A series of POM-based materials can be used as photoelectric sensors, showing high catalytic activities for CO2RR, which are significant for environmental protection and energy shortage.
Collapse
Affiliation(s)
- Baoyue Zhang
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Jun Ying
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Xinyue Zhang
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Chen Wang
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Aixiang Tian
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| |
Collapse
|