1
|
Ran Y, Lu W, Wang X, Qin Z, Qin X, Lu G, Hu Z, Zhu Y, Bu L, Lu G. High-performance asymmetric electrode structured light-stimulated synaptic transistor for artificial neural networks. MATERIALS HORIZONS 2023; 10:4438-4451. [PMID: 37489257 DOI: 10.1039/d3mh00775h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Photonics neuromorphic computing shows great prospects due to the advantages of low latency, low power consumption and high bandwidth. Transistors with asymmetric electrode structures are receiving increasing attention due to their low power consumption, high optical response, and simple preparation technology. However, intelligent optical synapses constructed by asymmetric electrodes are still lacking systematic research and mechanism analysis. Herein, we present an asymmetric electrode structure of the light-stimulated synaptic transistor (As-LSST) with a bulk heterojunction as the semiconductor layer. The As-LSST exhibits superior electrical properties, photosensitivity and multiple biological synaptic functions, including excitatory postsynaptic currents, paired-pulse facilitation, and long-term memory. Benefitting from the asymmetric electrode configuration, the devices can operate under a very low drain voltage of 1 × 10-7 V, and achieve an ultra-low energy consumption of 2.14 × 10-18 J per light stimulus event. Subsequently, As-LSST implemented the optical logic function and associative learning. Utilizing As-LSST, an artificial neural network (ANN) with ultra-high recognition rate (over 97.5%) of handwritten numbers was constructed. This work presents an easily-accessible concept for future neuromorphic computing and intelligent electronic devices.
Collapse
Affiliation(s)
- Yixin Ran
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Wanlong Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Xin Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Zongze Qin
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Xinsu Qin
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Guanyu Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Zhen Hu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Yuanwei Zhu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| |
Collapse
|
2
|
Wang M, Zhuang X, Liu F, Chen Y, Sa Z, Yin Y, Lv Z, Wei H, Song K, Cao B, Yang ZX. New Approach to Low-Power-Consumption, High-Performance Photodetectors Enabled by Nanowire Source-Gated Transistors. NANO LETTERS 2022; 22:9707-9713. [PMID: 36445059 DOI: 10.1021/acs.nanolett.2c04013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Power consumption makes next-generation large-scale photodetection challenging. In this work, the source-gated transistor (SGT) is adopted first as a photodetector, demonstrating the expected low power consumption and high photodetection performance. The SGT is constructed by the functional sulfur-rich shelled GeS nanowire (NW) and low-function metal, displaying a low saturated voltage of 0.61 V ± 0.29 V and an extremely low power consumption of 7.06 pW. When the as-constructed NW SGT is used as a photodetector, the maximum value of the power consumption is as low as 11.96 nW, which is far below that of the reported phototransistors working in the saturated region. Furthermore, benefiting from the adopted SGT device, the photodetector shows a high photovoltage of 6.6 × 10-1 V, a responsivity of 7.86 × 1012 V W-1, and a detectivity of 5.87 × 1013 Jones. Obviously, the low power consumption and excellent responsivity and detectivity enabled by NW SGT promise a new approach to next-generation, high-performance photodetection technology.
Collapse
Affiliation(s)
- Mingxu Wang
- School of Physics, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Xinming Zhuang
- School of Physics, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Fengjing Liu
- School of Physics, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Yang Chen
- School of Physics and Physical Engineering, Qufu Normal University, Qufu273165, China
| | - Zixu Sa
- School of Physics, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Yanxue Yin
- School of Physics, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Zengtao Lv
- School of Physics, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Haoming Wei
- School of Physics and Physical Engineering, Qufu Normal University, Qufu273165, China
| | - Kepeng Song
- School of Physics, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Bingqiang Cao
- School of Physics and Physical Engineering, Qufu Normal University, Qufu273165, China
- Materials Research Center for Energy and Photoelectrochemical Conversion, School of Material Science and Engineering, University of Jinan, Jinan250022, China
| | - Zai-Xing Yang
- School of Physics, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| |
Collapse
|
3
|
Li D, Jia Z, Tang Y, Song C, Liang K, Ren H, Li F, Chen Y, Wang Y, Lu X, Meng L, Zhu B. Inorganic-Organic Hybrid Phototransistor Array with Enhanced Photogating Effect for Dynamic Near-Infrared Light Sensing and Image Preprocessing. NANO LETTERS 2022; 22:5434-5442. [PMID: 35766590 DOI: 10.1021/acs.nanolett.2c01496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Narrow-band-gap organic semiconductors have emerged as appealing near-infrared (NIR) sensing materials by virtue of their unique optoelectronic properties. However, their limited carrier mobility impedes the implementation of large-area, dynamic NIR sensor arrays. In this work, high-performance inorganic-organic hybrid phototransistor arrays are achieved for NIR sensing, by taking advantage of the high electron mobility of In2O3 and the strong NIR absorption of a BTPV-4F:PTB7-Th bulk heterojunction (BHJ) with an enhanced photogating effect. As a result, the hybrid phototransistors reach a high responsivity of 1393.0 A W-1, a high specific detectivity of 4.8 × 1012 jones, and a fast response of 0.72 ms to NIR light (900 nm). Meanwhile, an integrated 16 × 16 phototransistor array with a one-transistor-one-phototransistor (1T1PT) architecture is achieved. On the basis of the enhanced photogating effect, the phototransistor array can not only achieve real-time, dynamic NIR light mapping but also implement image preprocessing, which is promising for advanced NIR image sensors.
Collapse
Affiliation(s)
- Dingwei Li
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Zhenrong Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yingjie Tang
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Chunyan Song
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Kun Liang
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Huihui Ren
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Fanfan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Yitong Chen
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Yan Wang
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, People's Republic of China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, People's Republic of China
| |
Collapse
|
4
|
Ren H, Xu T, Liang K, Li J, Fang Y, Li F, Chen Y, Zhang H, Li D, Tang Y, Wang Y, Song C, Wang H, Zhu B. Self-assembled peptides-modified flexible field-effect transistors for tyrosinase detection. iScience 2022; 25:103673. [PMID: 35024592 PMCID: PMC8733230 DOI: 10.1016/j.isci.2021.103673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Flexible biosensors have received intensive attention for real-time, non-invasive monitoring of cancer biomarkers. Highly sensitive tyrosinase biosensors, which are important for melanoma screening, remained a hurdle. Herein, high-performance tyrosinase-sensing field-effect transistor-based biosensors (bio-FETs) have been successfully achieved by self-assembling nanostructured tetrapeptide tryptophan-valine-phenylalanine-tyrosine (WVFY) on n-type metal oxide transistors. In the presence of target tyrosinase, the phenolic hydroxyl groups in WVFY are rapidly converted to benzoquinone with the consumption of protons, which could be detected potentiometrically by bio-FETs. As a result, the WVFY-modified bio-FETs exhibited an ultra-low detection limit of 1.9 fM and an optimal detection range of 10 fM to 1 nM toward tyrosinase sensing. Furthermore, flexible devices fabricated on ∼2.9-μm-thick polyimide (PI) substrates illustrated robust mechanical flexibility, which could be attached to human skin conformally. These achievements hold promise for wearable melanoma screening and provide designing guidelines for detecting other important cancer biomarkers with bio-FETs.
Collapse
Affiliation(s)
- Huihui Ren
- Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Tengyan Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
| | - Kun Liang
- Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Jiye Li
- Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Yu Fang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
| | - Fanfan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yitong Chen
- Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
| | - Dingwei Li
- Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Yingjie Tang
- Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Yan Wang
- Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Chunyan Song
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
5
|
Wang G, Zhuang X, Huang W, Yu J, Zhang H, Facchetti A, Marks TJ. New Opportunities for High-Performance Source-Gated Transistors Using Unconventional Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101473. [PMID: 34449126 PMCID: PMC8529450 DOI: 10.1002/advs.202101473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Source-gated transistors (SGTs), which are typically realized by introducing a source barrier in staggered thin-film transistors (TFTs), exhibit many advantages over conventional TFTs, including ultrahigh gain, lower power consumption, higher bias stress stability, immunity to short-channel effects, and greater tolerance to geometric variations. These properties make SGTs promising candidates for readily fabricated displays, biomedical sensors, and wearable electronics for the Internet of Things, where low power dissipation, high performance, and efficient, low-cost manufacturability are essential. In this review, the general aspects of SGT structure, fabrication, and operation mechanisms are first discussed, followed by a detailed property comparison with conventional TFTs. Next, advances in high-performance SGTs based on silicon are first discussed, followed by recent advances in emerging metal oxides, organic semiconductors, and 2D materials, which are individually discussed, followed by promising applications that can be uniquely realized by SGTs and their circuitry. Lastly, this review concludes with challenges and outlook overview.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
- Department of Chemistry and the Materials Research CenterNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Xinming Zhuang
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
- Department of Chemistry and the Materials Research CenterNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Wei Huang
- Department of Chemistry and the Materials Research CenterNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- School of Automation EngineeringUniversity of Electronic Science and Technology of China (UESTC)ChengduSichuan611731P. R. China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Huaiwu Zhang
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research CenterNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Flexterra CorporationSkokieIL60077USA
| | - Tobin J. Marks
- Department of Chemistry and the Materials Research CenterNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| |
Collapse
|
6
|
Liang K, Li D, Ren H, Zhao M, Wang H, Ding M, Xu G, Zhao X, Long S, Zhu S, Sheng P, Li W, Lin X, Zhu B. Fully Printed High-Performance n-Type Metal Oxide Thin-Film Transistors Utilizing Coffee-Ring Effect. NANO-MICRO LETTERS 2021; 13:164. [PMID: 34342729 PMCID: PMC8333237 DOI: 10.1007/s40820-021-00694-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Metal oxide thin-films transistors (TFTs) produced from solution-based printing techniques can lead to large-area electronics with low cost. However, the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the "coffee-ring" effect. Here, we report a novel approach to print high-performance indium tin oxide (ITO)-based TFTs and logic inverters by taking advantage of such notorious effect. ITO has high electrical conductivity and is generally used as an electrode material. However, by reducing the film thickness down to nanometers scale, the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors. The ultrathin (~10-nm-thick) ITO film in the center of the coffee-ring worked as semiconducting channels, while the thick ITO ridges (>18-nm-thick) served as the contact electrodes. The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V-1 s-1 and a low subthreshold swing of 105 mV dec-1. In addition, the devices exhibited excellent electrical stability under positive bias illumination stress (PBIS, ΔVth = 0.31 V) and negative bias illuminaiton stress (NBIS, ΔVth = -0.29 V) after 10,000 s voltage bias tests. More remarkably, fully printed n-type metal-oxide-semiconductor (NMOS) inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V, promising for advanced electronics applications.
Collapse
Affiliation(s)
- Kun Liang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Zhejiang University, Hangzhou, 310027, China
| | - Dingwei Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Zhejiang University, Hangzhou, 310027, China
| | - Huihui Ren
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Zhejiang University, Hangzhou, 310027, China
| | - Momo Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xian, 710071, China
| | - Hong Wang
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xian, 710071, China
| | - Mengfan Ding
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangwei Xu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zhao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Siyuan Zhu
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, China
| | - Pei Sheng
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, China
| | - Wenbin Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Xiao Lin
- School of Science, Westlake University, Hangzhou, 310024, China
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| |
Collapse
|