1
|
Cai W, Sun T, Qiu C, Sheng H, Chen R, Xie C, Kou L, Yao Q. Stable triangle: nanomedicine-based synergistic application of phototherapy and immunotherapy for tumor treatment. J Nanobiotechnology 2024; 22:635. [PMID: 39420366 PMCID: PMC11488210 DOI: 10.1186/s12951-024-02925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
In recent decades, cancer has posed a challenging obstacle that humans strive to overcome. While phototherapy and immunotherapy are two emerging therapies compared to traditional methods, they each have their advantages and limitations. These limitations include easy metastasis and recurrence, low response rates, and strong side effects. To address these issues, researchers have increasingly focused on combining these two therapies by utilizing a nano-drug delivery system due to its superior targeting effect and high drug loading rate, yielding remarkable results. The combination therapy demonstrates enhanced response efficiency and effectiveness, leading to a preparation that is highly targeted, responsive, and with low recurrence rates. This paper reviews several main mechanisms of anti-tumor effects observed in combination therapy based on the nano-drug delivery system over the last five years. Furthermore, the challenges and future prospects of this combination therapy are also discussed.
Collapse
Affiliation(s)
- Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Yi J, Liu L, Gao W, Zeng J, Chen Y, Pang E, Lan M, Yu C. Advances and perspectives in phototherapy-based combination therapy for cancer treatment. J Mater Chem B 2024; 12:6285-6304. [PMID: 38895829 DOI: 10.1039/d4tb00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), has the advantages of spatiotemporal selectivity, non-invasiveness, and negligible drug resistance. Phototherapy has been approved for treating superficial epidermal tumors. However, its therapeutic efficacy is limited by the hypoxic tumor microenvironment and the highly expressed heat shock protein. Moreover, poor tissue penetration and focused irradiation laser region in phototherapy make treating deep tissues and metastatic tumors challenging. Combination therapy strategies, which integrate the advantages of each treatment and overcome their disadvantages, can significantly improve the therapeutic efficacy. Recently, many combination therapy strategies have been reported. Our study summarizes the strategies used for combining phototherapy with other cancer treatments such as chemotherapy, immunotherapy, sonodynamic therapy, gas therapy, starvation therapy, and chemodynamic therapy. Some research cases were selected to analyze the combination therapy effect, delivery platform feature, and synergetic anticancer mechanisms. Moreover, additional research cases are summarized in the tables. This review provides strong evidence that phototherapy-based combination strategies can enhance the anticancer effect compared with phototherapy alone. Additionally, the challenges and future perspectives associated with these combinational therapies are discussed.
Collapse
Affiliation(s)
- Jianing Yi
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Luyao Liu
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Wenjie Gao
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Jie Zeng
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Yongzhi Chen
- Department of Hepatobiliary surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
3
|
Xu S, Li X, Hu Q, Zhang J, Li R, Meng L, Zhu X. Focused Ultrasound-Responsive Nanocomposite with Near-Infrared II Mechanoluminescence for Spatiotemporally Selective Immune Activation in Lymph Nodes. Chemistry 2024; 30:e202304066. [PMID: 38289154 DOI: 10.1002/chem.202304066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 02/15/2024]
Abstract
The immune regulation of the lymphatic system, especially the lymph node (LN), is of great significance for the treatment of diseases and the inhibition of pathogenic organisms spreading in the body. However, achieving precise spatiotemporal control of immune cell activation in LN in vivo remains a challenge due to tissue depth and off-target effects. Furthermore, minimally invasive and real-time feedback methods to monitor the regulation of the immune system in LN are lacking. Here, focused ultrasound responsive immunomodulator loaded nanoplatform (FURIN) with near-infrared II (NIR-II) luminescence is designed to achieve spatiotemporally controllable immune activation in LN in vivo. The NIR-II persistent luminescence of FURIN can track its delivery in LN through bioimaging. Under focused ultrasound (FUS) stimulation, the immunomodulator encapsulated in FURIN can be released locally in the LN to activate immune cells such as dendritic cells and the NIR-II mechanoluminescence of FURIN provides real-time optical feedback signals for immune activation. This work points to a FUS mediated, spatiotemporal selective immune activation strategy in vivo with the feedback control of luminescence signals via ultrasound responsive nanocomposite, which is of great significance in improving the efficacy and reducing the side effect of immune regulation for the development of potential immunotherapeutic methods in the future.
Collapse
Affiliation(s)
- Sixin Xu
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Xiaohe Li
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Qian Hu
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Jieying Zhang
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Ruotong Li
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Lingkai Meng
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Xingjun Zhu
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
- State Key Laboratory of Advanced Medical Materials and Devices., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| |
Collapse
|
4
|
Zhang Y, Yu Y, Yang Y, Wang Y, Yu C. Engineered Silica Nanoparticles for Nucleic Acid Delivery. SMALL METHODS 2024; 8:e2300812. [PMID: 37906035 DOI: 10.1002/smtd.202300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Indexed: 11/02/2023]
Abstract
The development of nucleic acid-based drugs holds great promise for therapeutic applications, but their effective delivery into cells is hindered by poor cellular membrane permeability and inherent instability. To overcome these challenges, delivery vehicles are required to protect and deliver nucleic acids efficiently. Silica nanoparticles (SiNPs) have emerged as promising nanovectors and recently bioregulators for gene delivery due to their unique advantages. In this review, a summary of recent advancements in the design of SiNPs for nucleic acid delivery and their applications is provided, mainly according to the specific type of nucleic acids. First, the structural characteristics and working mechanisms of various types of nucleic acids are introduced and classified according to their functions. Subsequently, for each nucleic acid type, the use of SiNPs for enhancing delivery performance and their biomedical applications are summarized. The tailored design of SiNPs for selected type of nucleic acid delivery will be highlighted considering the characteristics of nucleic acids. Lastly, the limitations in current research and personal perspectives on future directions in this field are presented. It is expected this opportune review will provide insights into a burgeoning research area for the development of next-generation SiNP-based nucleic acid delivery systems.
Collapse
Affiliation(s)
- Yue Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yingjie Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
5
|
Ma J, Li N, Wang J, Liu Z, Han Y, Zeng Y. In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms. EXPLORATION (BEIJING, CHINA) 2023; 3:20220161. [PMID: 37933283 PMCID: PMC10582616 DOI: 10.1002/exp.20220161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Tumor cells may be eliminated by increasing their temperature. This is achieved via photothermal therapy (PTT) by penetrating the tumor tissue with near-infrared light and converting light energy into heat using photothermal agents. Copper sulfide nanoparticles (CuS NPs) are commonly used as PTAs in PTT. In this review, we aimed to discuss the synergism between tumor PTT with CuS NPs and other therapies such as chemotherapy, radiotherapy, dynamic therapies (photodynamic, chemodynamic, and sonodynamic therapy), immunotherapy, gene therapy, gas therapy, and magnetic hyperthermia. Furthermore, we summarized the results obtained with a combination of two treatments and at least two therapies, with PTT as one of the included therapies. Finally, we summarized the benefits and drawbacks of various therapeutic options and state of the art CuS-based PTT and provided future directions for such therapies.
Collapse
Affiliation(s)
- Jingwen Ma
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Na Li
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Jingjian Wang
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Zhe Liu
- Department of PathologyNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Yulong Han
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Yun Zeng
- School of Life Science and TechnologyXidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of EducationXi'anShaanxi ProvinceP. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans‐Scale Life Information, School of Life Science and TechnologyXidian UniversityXi'anShaanxi ProvinceP. R. China
| |
Collapse
|
6
|
Lin X, Li F, Guan J, Wang X, Yao C, Zeng Y, Liu X. Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy. ACS NANO 2023; 17:14494-14507. [PMID: 37485850 DOI: 10.1021/acsnano.3c01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An immunosuppressive tumor microenvironment (TME) with inadequate and exhausted tumor-infiltrating cytotoxic lymphocytes and abundant cellular immunosuppressors is the major obstacle responsible for the poor efficacy of PD-1/PD-L1 (programmed cell death 1 and its ligand 1) immune checkpoint blockade (ICB) therapy. Herein, a Janus silica nanoparticle (JSNP)-based immunomodulator is explored to reshape the TME for boosting the therapeutic outcomes of αPD-L1 therapy. The designed JSNP has two distinct domains, namely, an ultra pH-responsive side (UPS), which could encapsulate PI3Kγ inhibitor IPI549 in the pore structure, and a polycation-grafted intra-glutathione (GSH)-sensitive side (IGS), which could absorb CXCL9 cDNA on the surface. The final IPI549@UPS-IGS-PDMAEMA@CXCL9 cDNA (IUIPC) could release IPI549 in weak acid TME to target myeloid-derived suppressor cells (MDSCs) to reverse negative immunoregulation and then release CXCL9 cDNA in tumor cells with abundant GSH for sustained CXCL9 chemokine expression and secretion to improve cytotoxic lymphocyte recruitment signals, thereby jointly restoring tumor sensitivity to PD-1/PD-L1 ICB therapy. As expected, the IUIPC-mediated TME remodeling during αPD-L1 therapy significantly ameliorated TME immunosuppression, as well as induced potent systemic antitumor immune responses, which ultimately achieved a robustly boosted antitumor efficacy proven by remarkable suppression of primary tumor growth, obvious prevention of tumor recurrence, and significant regression of abscopal tumors. Hence, the IUIPC-mediated TME-regulating strategy provides an enormous perspective for the improvement of PD-1/PD-L1 ICB therapy.
Collapse
Affiliation(s)
- Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feida Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaoyan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
7
|
He J, Song R, Xiao F, Wang M, Wen L. Cu 3P/1-MT Nanocomposites Potentiated Photothermal-Immunotherapy. Int J Nanomedicine 2023; 18:3021-3033. [PMID: 37312933 PMCID: PMC10258043 DOI: 10.2147/ijn.s414117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Purpose Photothermal therapy (PTT) is a promising anticancer treatment that involves inducing thermal ablation and enhancing antitumor immune responses. However, it is difficult to completely eradicate tumor foci through thermal ablation alone. Additionally, the PTT elicited antitumor immune responses are often insufficient to prevent tumor recurrence or metastasis, due to the presence of an immunosuppressive microenvironment. Therefore, combining photothermal and immunotherapy is believed to be a more effective treatment approach as it can modulate the immune microenvironment and amplify the post-ablation immune response. Methods Herein, the indoleamine 2, 3-dioxygenase-1 inhibitors (1-MT) loaded copper (I) phosphide nanocomposites (Cu3P/1-MT NPs) are prepared for PTT and immunotherapy. The thermal variations of the Cu3P/1-MT NPs solution under different conditions were measured. The cellular cytotoxicity and immunogenic cell death (ICD) induction efficiency of Cu3P/1-MT NPs were analyzed by cell counting kit-8 assay and flow cytometry in 4T1 cells. And the immune response and antitumor therapeutic efficacy of Cu3P/1-MT NPs were evaluated in 4T1-tumor bearing mice. Results Even at low energy of laser irradiation, Cu3P/1-MT NPs remarkably enhanced PTT efficacy and induced immunogenic tumor cell death. Particularly, the tumor-associated antigens (TAAs) could help promote the maturation of dendritic cells (DCs) and antigen presentation, which further activates infiltration of CD8+ T cells through synergistically inhibiting the indoleamine 2, 3-dioxygenase-1. Additionally, Cu3P/1-MT NPs decreased the suppressive immune cells such as regulatory T cells (Tregs) and M2 macrophages, indicating an immune suppression modulation effect. Conclusion Cu3P/1-MT nanocomposites with excellent photothermal conversion efficiency and immunomodulatory properties were prepared. In addition to enhanced the PTT efficacy and induced immunogenic tumor cell death, it also modulated the immunosuppressive microenvironment. Thereby, this study is expected to offer a practical and convenient approach to amplify the antitumor therapeutic efficiency with photothermal-immunotherapy.
Collapse
Affiliation(s)
- Jiawen He
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, People’s Republic of China
| | - Ruixiang Song
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, People’s Republic of China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, People’s Republic of China
| | - Meng Wang
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen, People’s Republic of China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, People’s Republic of China
| |
Collapse
|
8
|
Yu Z, Wang D, Qi Y, Liu J, Zhou T, Rao W, Hu K. Autologous-cancer-cryoablation-mediated nanovaccine augments systematic immunotherapy. MATERIALS HORIZONS 2023; 10:1661-1677. [PMID: 36880811 DOI: 10.1039/d3mh00092c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cancer vaccines developed from autologous tumors hold tremendous promise for individualized cancer immunotherapy. Cryoablation-induced in situ autologous antigens are capable of activating systemic immunity with low damage. However, the dissipation of cancer fragments after cryoablation induces poor immunogenicity and short-time maintenance of immunological memory. To solve this challenge, a nanovaccine with functional grippers is proposed to largely enhance the in situ grasping of tumor fragments, combined with an immune adjuvant to further strengthen the immune-therapeutic effect. Herein, maleimide-modified Pluronic F127-chitosan nanoparticles encapsulating Astragalus polysaccharide (AMNPs) are developed. The AMNPs can capture multifarious and immunogenic tumor antigens generated through cryoablation, specifically target lymph nodes and facilitate lysosome escape to activate remote dendritic cells, and modulate T cell differentiation through cross-presentation, thereby breaking the immunosuppressive microenvironment to achieve durable and robust tumor-specific immunity. In the bilateral Lewis lung cancer tumor model, AMNP-mediated cryoablation can significantly regress primary tumors (with a tumor growth inhibition rate of 100%, and a recurrence rate of 0% (30 days) and 16.67% (60 days)), inhibit untreated abscopal tumor growth (a decrease of about 3.84-fold compared with the saline group), and ultimately improve the long-term survival rate (83.33%). Collectively, the development of a lymph-node-targeted in situ cancer-cryoablation-mediated nanovaccine provides a promising approach for personalized cancer immunotherapy against metastatic cancers.
Collapse
Affiliation(s)
- Zhongyang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Dawei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxia Qi
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Jing Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Zhou
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Wei Rao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
9
|
Perez-Potti A, Rodríguez-Pérez M, Polo E, Pelaz B, Del Pino P. Nanoparticle-based immunotherapeutics: from the properties of nanocores to the differential effects of administration routes. Adv Drug Deliv Rev 2023; 197:114829. [PMID: 37121275 DOI: 10.1016/j.addr.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
The engagement with the immune system is one of the main cornerstones in the development of nanotechnologies for therapy and diagnostics. Recent advances have made possible the tuning of features like size, shape and biomolecular modifications that influence such interactions, however, the capabilities for immune modulation of nanoparticles are still not well defined and exploited. This review focuses on recent advances made in preclinical research for the application of nanoparticles to modulate immune responses, and the main features making them relevant for such applications. We review and discuss newest evidence in the field, which include in vivo experiments with an extensive physicochemical characterization as well as detailed study of the induced immune response. We emphasize the need of incorporating knowledge about immune response development and regulation in the design and application of nanoparticles, including the effect by parameters such as the administration route and the differential interactions with immune subsets.
Collapse
Affiliation(s)
- André Perez-Potti
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Relvas CM, Santos SG, Oliveira MJ, Magalhães FD, Pinto AM. Nanomaterials for Skin Cancer Photoimmunotherapy. Biomedicines 2023; 11:biomedicines11051292. [PMID: 37238966 DOI: 10.3390/biomedicines11051292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Skin cancer is one of the most common types of cancer, and its incidence continues to increase. It is divided into two main categories, melanoma and non-melanoma. Treatments include surgery, radiation therapy, and chemotherapy. The relatively high mortality in melanoma and the existing recurrence rates, both for melanoma and non-melanoma, create the need for studying and developing new approaches for skin cancer management. Recent studies have focused on immunotherapy, photodynamic therapy, photothermal therapy, and photoimmunotherapy. Photoimmunotherapy has gained much attention due to its excellent potential outcomes. It combines the advantages of photodynamic and/or photothermal therapy with a systemic immune response, making it ideal for metastatic cancer. This review critically discusses different new nanomaterials' properties and mechanisms of action for skin cancer photoimmunotherapy and the main results obtained in the field.
Collapse
Affiliation(s)
- Carlota M Relvas
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Susana G Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Artur M Pinto
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| |
Collapse
|
11
|
Xin Q, Ma H, Wang H, Zhang X. Tracking tumor heterogeneity and progression with near-infrared II fluorophores. EXPLORATION (BEIJING, CHINA) 2023; 3:20220011. [PMID: 37324032 PMCID: PMC10191063 DOI: 10.1002/exp.20220011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Heterogeneous cells are the main feature of tumors with unique genetic and phenotypic characteristics, which can stimulate differentially the progression, metastasis, and drug resistance. Importantly, heterogeneity is pervasive in human malignant tumors, and identification of the degree of tumor heterogeneity in individual tumors and progression is a critical task for tumor treatment. However, current medical tests cannot meet these needs; in particular, the need for noninvasive visualization of single-cell heterogeneity. Near-infrared II (NIR-II, 1000-1700 nm) imaging exhibits an exciting prospect for non-invasive monitoring due to the high temporal-spatial resolution. More importantly, NIR-II imaging displays more extended tissue penetration depths and reduced tissue backgrounds because of the significantly lower photon scattering and tissue autofluorescence than traditional the near-infrared I (NIR-I) imaging. In this review, we summarize systematically the advances made in NIR-II in tumor imaging, especially in the detection of tumor heterogeneity and progression as well as in tumor treatment. As a non-invasive visual inspection modality, NIR-II imaging shows promising prospects for understanding the differences in tumor heterogeneity and progression and is envisioned to have the potential to be used clinically.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of PathologyTianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
| | - Xiao‐Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| |
Collapse
|
12
|
Abstract
Immunotherapy has revolutionized the treatment of patients with cancer. However, promoting antitumour immunity in patients with tumours that are resistant to these therapies remains a challenge. Thermal therapies provide a promising immune-adjuvant strategy for use with immunotherapy, mostly owing to the capacity to reprogramme the tumour microenvironment through induction of immunogenic cell death, which also promotes the recruitment of endogenous immune cells. Thus, thermal immunotherapeutic strategies for various cancers are an area of considerable research interest. In this Review, we describe the role of the various thermal therapies and provide an update on attempts to combine these with immunotherapies in clinical trials. We also provide an overview of the preclinical development of various thermal immuno-nanomedicines, which are capable of combining thermal therapies with various immunotherapy strategies in a single therapeutic platform. Finally, we discuss the challenges associated with the clinical translation of thermal immuno-nanomedicines and emphasize the importance of multidisciplinary and inter-professional collaboration to facilitate the optimal translation of this technology from bench to bedside.
Collapse
|
13
|
Chen W, Sheng P, Chen Y, Liang Y, Wu S, Jia L, He X, Zhang CF, Wang CZ, Yuan CS. Hypoxia-responsive Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy for Potentiating Cancer Immunotherapy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023. [PMID: 37033201 DOI: 10.1016/j.cej.2022.134869] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inducing cell death while simultaneously enhancing antitumor immune responses is a promising therapeutic approach for multiple cancers. Celastrol (Cel) and 7-ethyl-10-hydroxycamptothecin (SN38) have contrasting physicochemical properties, but strong synergy in immunogenic cell death induction and anticancer activity. Herein, a hypoxia-sensitive nanosystem (CS@TAP) was designed to demonstrate effective immunotherapy for colorectal cancer by systemic delivery of an immunostimulatory chemotherapy combination. Furthermore, the combination of CS@TAP with anti-PD-L1 mAb (αPD-L1) exhibited a significant therapeutic benefit of delaying tumor growth and increased local doses of immunogenic signaling and T-cell infiltration, ultimately extending survival. We conclude that CS@TAP is an effective inducer of immunogenic cell death (ICD) in cancer immunotherapy. Therefore, this study provides an encouraging strategy to synergistically induce immunogenic cell death to enhance tumor cytotoxic T lymphocytes (CTLs) infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Weiguo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Sheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujiang Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
14
|
Biomaterial-assisted photoimmunotherapy for synergistic suppression of cancer progression. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Fedorenko S, Farvaeva D, Stepanov A, Bochkova O, Kholin K, Nizameev I, Drobyshev S, Gerasimova T, Voloshina A, Fanizza E, Depalo N, Sibgatullina G, Samigullin D, Petrov K, Gubaidullin A, Mustafina A. Tricks for organic-capped Cu2-xS nanoparticles encapsulation into silica nanocomposites co-doped with red emitting luminophore for NIR activated-photothermal/chemodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022; 26:61. [PMID: 36348441 PMCID: PMC9641873 DOI: 10.1186/s40824-022-00308-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
Near-infrared-II (NIR-II, 1000–1700 nm) light-triggered photothermal therapy (PTT) has been regarded as a promising candidate for cancer treatment, but PTT alone often fails to achieve satisfactory curative outcomes. Hollow nanoplatforms prove to be attractive in the biomedical field owing to the merits including good biocompatibility, intrinsic physical-chemical nature and unique hollow structures, etc. On one hand, hollow nanoplatforms themselves can be NIR-II photothermal agents (PTAs), the cavities of which are able to carry diverse therapeutic units to realize multi-modal therapies. On the other hand, NIR-II PTAs are capable of decorating on the surface to combine with the functions of components encapsulated inside the hollow nanoplatforms for synergistic cancer treatment. Notably, PTAs generally can serve as good photoacoustic imaging (PAI) contrast agents (CAs), which means such kind of hollow nanoplatforms are also expected to be multifunctional all-in-one nanotheranostics. In this review, the recent advances of NIR-II hollow nanoplatforms for single-modal PTT, dual-modal PTT/photodynamic therapy (PDT), PTT/chemotherapy, PTT/catalytic therapy and PTT/gas therapy as well as multi-modal PTT/chemodynamic therapy (CDT)/chemotherapy, PTT/chemo/gene therapy and PTT/PDT/CDT/starvation therapy (ST)/immunotherapy are summarized for the first time. Before these, the typical synthetic strategies for hollow structures are presented, and lastly, potential challenges and perspectives related to these novel paradigms for future research and clinical translation are discussed.
Collapse
|
17
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
18
|
Xia Y, Yang R, Zhu J, Wang H, Li Y, Fan J, Fu C. Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers. Front Bioeng Biotechnol 2022; 10:890257. [PMID: 36394039 PMCID: PMC9643844 DOI: 10.3389/fbioe.2022.890257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite advances in cancer treatment, metastatic cancer is still the main cause of death in cancer patients. At present, the treatment of metastatic cancer is limited to palliative care. The abscopal effect is a rare phenomenon in which shrinkage of metastatic tumors occurs simultaneously with the shrinkage of a tumor receiving localized treatment, such as local radiotherapy or immunotherapy. Immunotherapy shows promise for cancer treatment, but it also leads to consequences such as low responsiveness and immune-related adverse events. As a promising target-based approach, intravenous or intratumoral injection of nanomaterials provides new opportunities for improving cancer immunotherapy. Chemically modified nanomaterials may be able to trigger the abscopal effect by regulating immune cells. This review discusses the use of nanomaterials in killing metastatic tumor cells through the regulation of immune cells and the prospects of such nanomaterials for clinical use.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
19
|
Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials for cancer theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1797. [PMID: 35419993 DOI: 10.1002/wnan.1797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Copper-based nanomaterials (Cu-based NMs) with favorable biocompatibility and unique properties have attracted the attention of many biomedical researchers. Cu-based NMs are one of the most widely studied materials in cancer treatment. In recent years, great progress has been made in the field of biomedicine, especially in the treatment and diagnosis of tumors. This review begins with the classification of Cu-based NMs and the recent synthetic strategies of Cu-based NMs. Then, according to the abundant and special properties of Cu-based NMs, their application in biomedicine is summarized in detail. For biomedical imaging, such as photoacoustic imaging, positron emission tomography imaging, and multimodal imaging based on Cu-based NMs are summarized, as well as strategies to improve the diagnostic effectiveness. Moreover, a series of unique structures and functions as well as the underlying property activity relationship of Cu-based NMs were shown to highlight their promising therapeutic performance. Cu-based NMs have been widely used in monotherapies, such as photothermal therapy (PTT) and chemodynamic therapy (CDT). Moreover, the sophisticated design in composition, structure, and surface fabrication of Cu-based NMs can endow these NMs with more modalities in cancer diagnosis and therapy. To further improve the efficiency of cancer treatment, combined therapy based on Cu-based NMs was introduced in detail. Finally, the challenges, critical factors, and future prospects for the clinical translation of Cu-based NMs as multifunctional theranostic agents were also considered and discussed. The aim of this review is to provide a better understanding and key consideration for the rational design of this increasingly important new paradigm of Cu-based NMs as theranostic agents. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiaoyan Zhong
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Lin X, Li F, Gu Q, Wang X, Zheng Y, Li J, Guan J, Yao C, Liu X. Gold-seaurchin based immunomodulator enabling photothermal intervention and αCD16 transfection to boost NK cell adoptive immunotherapy. Acta Biomater 2022; 146:406-420. [PMID: 35470078 DOI: 10.1016/j.actbio.2022.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
Despite huge potentials of NK cells in adoptive cell therapy (ACT), formidable physical barriers of the tumor tissue and deficiency of recognizing signals on tumor cells severely prevent NK cell infiltrating, activating and killing performances. Herein, a nano-immunomodulator AuNSP@αCD16 (CD16 antibody encoding plasmid) is explored to remodel the tumor microenvironment (TME) for improving the antitumor effects of adoptive NK cells. The as-prepared AuNSP, with a seaurchin-like gold core and a cationic polymer shell, exhibited a high gene transfection efficiency and a stable NIR-II photothermal capacity. The AuNSP could trigger mild photothermal intervention to partly destroy tumors and collapse the dense physical barriers, making a permeable TME for NK cell infiltration. What's more, the AuNSP could achieve αCD16 gene transfection to modify tumor surface with CD16 antibody, marking a unique structure on tumor cells for NK cell recognition and then lead to strong NK cell activation by CD16-mediated antibody-dependent cellular cytotoxicity (ADCC). As expected, the designed AuNSP@αCD16 induced an immune-favorable TME for NK cell performing killing functions against solid tumors, increasing the release of cytolytic granules and proinflammatory cytokines, which ultimately achieved a robustly boosted NK cell-based immunotherapy. Hence, the AuNSP@αCD16-mediated TME reconstituting strategy provides a substantial perspective for NK-based ACT on solid tumors. STATEMENT OF SIGNIFICANCE: In adoptive cell therapy (ACT), natural killer (NK) cells exhibit greater off-the-shelf utility and improved safety comparing with T cells, but the efficacy of NK cell therapy is severely compromised by formidable physical barriers of the tumor tissue and deficiency of NK cell recognizing signals on tumor cells. Herein, a nano-immunomodulator AuNSP@αCD16, with the abilities of inducing mild photothermal intervention and modifying the tumor cell surface with αCD16, is explored to reconstruct an infiltration-favorable and activation-facilitating tumor microenvironment for NK cells to perform killing functions. Such a simple and safe strategy is believed as a very promising candidate for future NK-based ACT.
Collapse
Affiliation(s)
- Xinyi Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, China
| | - Feida Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Gu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoyan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, China
| | - Jiong Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
21
|
Cao Y, Wei D, Yang L, Luo Z, Yu P, Li H, Zhang C, Liu X, Wu F, Wu M, Zeng Y. Nanoplatform Self-Assembly from Small Molecules of Porphyrin Derivatives for NIR-II Fluorescence Imaging Guided Photothermal-Immunotherapy. Adv Healthc Mater 2022; 11:e2102526. [PMID: 35134273 DOI: 10.1002/adhm.202102526] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Indexed: 01/12/2023]
Abstract
Combinatorial photothermal and immunotherapy have demonstrated great potential to remove primary tumors, suppress metastases, and prevent tumor recurrence. However, this strategy still confronts patients with many limitations, such as complex components, sophisticated construction, and inadequate therapeutic efficacy. In this work, small molecules of porphyrin derivatives (PPor) which can self-assemble into monodispersed nanoparticles without supplement of any other ingredients or surfactants are developed. The formed PPor nanoparticles (PPor NPs) exhibit highly photothermal conversion efficiency of 70% and NIR-II luminous abilities originate from the strong intramolecular charge transfer (ICT) effect of D-A structure under 808 nm laser irradiation, thus achieving NIR-II fluorescence imaging guided photothermal therapy (PTT) against primary tumors with a high cure rate. More importantly, tumor-associated antigens (TAAs), together with damage-associated molecular patterns (DAMPs) released from PTT-treated cancer cells, are proved to elicit immune responses to some degree. After combination with programmed cell death-1 (PD-1) antibodies, a robust systematic antitumor immunity is generated to restrain both primary and abscopal tumors growth, prolong survival, and prevent pulmonary metastasis on an aggressive 4T1 murine breast tumor model. Thus, this study provides a promising therapeutic paradigm with porphyrin derivatives nano-assembly as phototheranostic agents for the treatment of aggressive tumors with high efficiency.
Collapse
Affiliation(s)
- Yanbing Cao
- College of Chemical Engineering Fuzhou University Fuzhou 350108 P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - De Wei
- Department of Neurosurgery Fujian Provincial Hospital South Branch Fuzhou 350001 P. R. China
- Department of Neurosurgery Shengli Clinical Medical College of Fujian Medical University Fuzhou 350001 P. R. China
| | - Lixia Yang
- Key Laboratory for Green Chemical Process of the Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Zijin Luo
- Key Laboratory for Green Chemical Process of the Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Peiwen Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Mengchao Med‐X Center Fuzhou University Fuzhou 350116 P. R. China
| | - Hao Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Mengchao Med‐X Center Fuzhou University Fuzhou 350116 P. R. China
| | - Cao Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Mengchao Med‐X Center Fuzhou University Fuzhou 350116 P. R. China
| | - Xiaolong Liu
- College of Chemical Engineering Fuzhou University Fuzhou 350108 P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Mengchao Med‐X Center Fuzhou University Fuzhou 350116 P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of the Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Mengchao Med‐X Center Fuzhou University Fuzhou 350116 P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Mengchao Med‐X Center Fuzhou University Fuzhou 350116 P. R. China
- Liver Disease Center The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 P. R. China
| |
Collapse
|
22
|
Wang F, Zhu J, Wang Y, Li J. Recent Advances in Engineering Nanomedicines for Second Near-Infrared Photothermal-Combinational Immunotherapy. NANOMATERIALS 2022; 12:nano12101656. [PMID: 35630880 PMCID: PMC9144442 DOI: 10.3390/nano12101656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Immunotherapy has emerged as one of the major strategies for cancer treatment. Unlike conventional therapeutic methods, immunotherapy can treat both primary and distant metastatic tumors through triggering systematic antitumor immune responses and can even prevent tumor recurrence after causing the formation of immune memory. However, immunotherapy still has the issues of low patient response rates and severe immune-related adverse events in clinical practices. In this regard, the combination of nanomedicine-mediated therapy with immunotherapy can modulate a tumor immunosuppressive microenvironment and thus amplify antitumor immunity. In particular, second near-infrared (NIR-II) photothermal therapy (PTT), which utilizes light conversions to generate heat for killing cancer cells, has shown unique advantages in combining with immunotherapy. In this review, the recent progress of engineering nanomedicines for NIR-II PTT combinational immunotherapy is summarized. The role of nanomedicine-mediated NIR-II PTT in inducing immunogenic cell death and reprogramming the tumor immunosuppressive microenvironment for facilitating immunotherapy are highlighted. The development of NIR-II-absorbing organic and inorganic nonmetal and inorganic metal nanomedicines for the NIR-II PTT combinational immunotherapy of cancer is also introduced in detail. Lastly, the current challenges and future perspectives of these nanomedicines for combinational immunotherapy are proposed.
Collapse
Affiliation(s)
- Fengshuo Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China;
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Correspondence: (Y.W.); (J.L.)
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Correspondence: (Y.W.); (J.L.)
| |
Collapse
|
23
|
Wang X, Wu M, Zhang X, Li F, Zeng Y, Lin X, Liu X, Liu J. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. J Nanobiotechnology 2021; 19:204. [PMID: 34238297 PMCID: PMC8265128 DOI: 10.1186/s12951-021-00952-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background Photodynamic therapy (PDT), a typical reactive oxygen species (ROS)-dependent treatment with high controllability, has emerged as an alternative cancer therapy modality but its therapeutic efficacy is still unsatisfactory due to the limited light penetration and constant oxygen consumption. With the development of another ROS-dependent paradigm ferroptosis, several efforts have been made to conquer the poor efficacy by combining these two approaches; however the biocompatibility, tumor-targeting capacity and clinical translation prospect of current studies still exist great concerns. Herein, a novel hypoxia-responsive nanoreactor BCFe@SRF with sorafenib (SRF) loaded inside, constructed by covalently connecting chlorin e6 conjugated bovine serum albumin (BSA-Ce6) and ferritin through azobenzene (Azo) linker, were prepared to offer unmatched opportunities for high-efficient PDT and ferroptosis synergistic therapy. Results The designed BCFe@SRF exhibited appropriate size distribution, stable dispersity, excellent ROS generation property, controllable drug release capacity, tumor accumulation ability, and outstanding biocompatibility. Importantly, the BCFe@SRF could be degraded under hypoxia environment to release BSA-Ce6 for laser-triggered PDT, ferritin for iron-catalyzed Fenton reaction and SRF for tumor antioxidative defense disruption. Meanwhile, besides PDT effects, it was found that BCFe@SRF mediated treatment upon laser irradiation in hypoxic environment not only could accelerate lipid peroxidation (LPO) generation but also could deplete intracellular glutathione (GSH) and decrease glutathione peroxidase (GPX4) expression, which was believed as three symbolic events during ferroptosis. All in all, the BCFe@SRF nanoreactor, employing multiple cascaded pathways to promote intracellular ROS accumulation, presented remarkably outstanding antitumor effects both in vitro and in vivo. Conclusion BCFe@SRF could serve as a promising candidate for synergistic PDT and ferroptosis therapy, which is applicable to boost oxidative damage within tumor site and will be informative to future design of ROS-dependent therapeutic nanoplatforms. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00952-y.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Feida Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| | - Xiaolong Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China. .,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Jingfeng Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China. .,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China. .,Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, People's Republic of China.
| |
Collapse
|
24
|
Huang X, Lu Y, Guo M, Du S, Han N. Recent strategies for nano-based PTT combined with immunotherapy: from a biomaterial point of view. Theranostics 2021; 11:7546-7569. [PMID: 34158866 PMCID: PMC8210617 DOI: 10.7150/thno.56482] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer has been a great threat to humans for decades. Due to the limitations of monotherapy, combinational therapies such as photothermal therapy (PTT) and immunotherapy have gained increasing attention with expectation to overcome the shortfalls of each other and obtain satisfactory therapeutic outcomes. PTT can inhibit primary tumors by thermal ablation but usually fails to achieve complete eradication and cannot prevent metastasis and recurrence. Meanwhile, the efficacy of immunotherapy is usually attenuated by the weak immunogenicity of tumor and the immunosuppressive tumor microenvironment (ITM). Therefore, many recent studies have attempted to synergize PTT with immunotherapy in order to enhance the therapeutic efficacy. In this review, we aim to summarize the cutting-edge strategies in combining nano-based PTT with immunotherapy for cancer treatment. Herein, the combination strategies were mainly classified into four categories, including 1) nano-based PTT combined with antigens to induce host immune responses; 2) nano-based PTT in combination with immune adjuvants acting as in situ vaccines; 3) nano-based PTT synergized with immune checkpoint blockade or other regulators to relieve the ITM; 4) nano-based PTT combined with CAR-T therapy or cytokine therapy for tumor treatment. The characteristics of various photothermal agents and nanoplatforms as well as the immunological mechanisms for the synergism were also introduced in detail. Finally, we discussed the existing challenges and future prospects in combined PTT and immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ning Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
25
|
Lin X, Wang X, Gu Q, Lei D, Liu X, Yao C. Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomed Mater 2021; 16. [PMID: 33601351 DOI: 10.1088/1748-605x/abe7b3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy was emerged as a novel cancer treatment in the last decade, however, efficacious responses to mono-immunotherapy have only been achieved in a relatively small portion of patients whereas combinational immunotherapies often lead to concurrent side effects. It has been proved that the tumor microenvironment (TME) is responsible for tumor immune escape and the ultimate treatment failure. Recently, both the understanding of the TME and the applications of nanotechnological strategies have achieved remarkable progresses, and reviewing the emerging immune-regulatory nanosystems may provide valuable information for specifically modulating the TME at different immune stages. In this review, we focus on comprehending the recently proposed T-cell-based tumor classification and identifying the most promising targets for different tumor phenotypes, and then summarizing the nanotechnological strategies to best target corresponding immune-related factors. For future precise personalized immunotherapy, the tailor-made TME modulation strategies conducted by well-designed nanosystems to alleviate the suppressive TME and then promote anti-tumor immune responses will significantly benefit the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Xinyi Lin
- Xi'an Jiaotong University School of Life Science and Technology, NO. 28 Xianning Xi Road, Xi'an, Shaanxi, 710049, CHINA
| | - Xiaoyan Wang
- Fujian Agriculture and Forestry University, NO.15 Shangdian Road, Fuzhou, 350002, CHINA
| | - Qing Gu
- Xi'an Jiaotong University School of Life Science and Technology, NO.28 Xianning Xi Road, Xi'an, 710049, CHINA
| | - Dongqin Lei
- Xi'an Jiaotong University, NO.28 Xianning Xi Road, Xi'an, 710049, CHINA
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, NO.312 Xihong Road, Fuzhou, Fujian, 350025, CHINA
| | - Cuiping Yao
- Xi'an Jiaotong University School of Life Science and Technology, NO.28 Xianning Xi Road, Xi'an, Shaanxi, 710049, CHINA
| |
Collapse
|