1
|
Su R, Li S, Su Y, Wang Z, Gao M. Ultrasensitive detection of contaminants in milk using a novel NMS-Ag modified water-resistant paper substrate. Food Chem 2024; 461:140843. [PMID: 39178549 DOI: 10.1016/j.foodchem.2024.140843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Rapid and precise detection of harmful substances in food products is essential for ensuring public health and safety. This study introduces a novel surface-enhanced Raman spectroscopy (SERS) substrate, composed of a molybdenum disulfide‑silver nanocomposite, applied to flexible, water-resistant filter paper for detecting melamine and bisphenol A (BPA) in milk. Optimized molybdenum disulfide (NMS) nanoflowers (NFs) were synthesized through hydrothermal methods and high-temperature annealing, then modified with silver (Ag) nanoparticles to form the NMS-Ag nanocomposite (NMSA6). This substrate greatly enhances the Raman signal, achieving an enhancement factor of approximately 1.49 × 107 and a detection limit as low as 10-11 M for simultaneous multi-component analysis. Finite-difference time-domain (FDTD) simulations confirm the enhancement mechanism. The NMSA6 substrate demonstrates remarkably low detection limits for BPA and melamine, facilitating the analysis of various hazardous substances. These findings highlight the substrate's potential for highly sensitive, label-free detection, presenting a viable tool for food safety monitoring.
Collapse
Affiliation(s)
- Rui Su
- College of Physics, Jilin Normal University, Siping 136000, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Siqi Li
- College of Physics, Jilin Normal University, Siping 136000, PR China
| | - Yugang Su
- College of Physics, Jilin Normal University, Siping 136000, PR China.
| | - Zhong Wang
- College of Physics, Jilin Normal University, Siping 136000, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Ming Gao
- College of Physics, Jilin Normal University, Siping 136000, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
2
|
Kong F, Ji C, Zhao G, Zhang L, Hao Z, Wang H, Dai J, Huang H, Pan L, Li D. Controlled Fabrication of Wafer-Scale, Flexible Ag-TiO 2 Nanoparticle-Film Hybrid Surface-Enhanced Raman Scattering Substrates for Sub-Micrometer Plastics Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1597. [PMID: 39404325 PMCID: PMC11477886 DOI: 10.3390/nano14191597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
As an important trace molecular detection technique, surface-enhanced Raman scattering (SERS) has been extensively investigated, while the realization of simple, low-cost, and controllable fabrication of wafer-scale, flexible SERS-active substrates remains challenging. Here, we report a facile, low-cost strategy for fabricating wafer-scale SERS substrates based on Ag-TiO2 nanoparticle-film hybrids by combining dip-coating and UV light array photo-deposition. The results show that a centimeter-scale Ag nanoparticle (AgNP) film (~20 cm × 20 cm) could be uniformly photo-deposited on both non-flexible and flexible TiO2 substrates, with a relative standard deviation in particle size of only 5.63%. The large-scale AgNP/TiO2 hybrids working as SERS substrates show high sensitivity and good uniformity at both the micron and wafer levels, as evidenced by scanning electron microscopy and Raman measurements. In situ bending and tensile experiments demonstrate that the as-prepared flexible AgNP/TiO2 SERS substrate is mechanically robust, exhibiting stable SERS activity even in a large bending state as well as after more than 200 tensile cycles. Moreover, the flexible AgNP/TiO2 SERS substrates show excellent performance in detecting sub-micrometer-sized plastics (≤1 μm) and low-concentration organic pollutants on complex surfaces. Overall, this study provides a simple path toward wafer-scale, flexible SERS substrate fabrication, which is a big step for practical applications of the SERS technique.
Collapse
Affiliation(s)
- Fanyi Kong
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Chenhua Ji
- Department of General Medicine, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian 116033, China
| | - Gaolei Zhao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Zheng Hao
- Dalian University of Technology and Belarusian State University Joint Institute, Dalian University of Technology, Dalian 116024, China
| | - Hu Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Jianxun Dai
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Huolin Huang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Lujun Pan
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Dawei Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
- Dalian University of Technology and Belarusian State University Joint Institute, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Husain S, Mutalik C, Yougbaré S, Chen CY, Kuo TR. Plasmonic Au@Ag Core-Shell Nanoisland Film for Photothermal Inactivation and Surface-Enhanced Raman Scattering Detection of Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:695. [PMID: 38668189 PMCID: PMC11053632 DOI: 10.3390/nano14080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Plasmonic metal nanomaterials have been extensively investigated for their utilizations in biomedical sensing and treatment. In this study, plasmonic Au@Ag core-shell nanoisland films (Au@AgNIFs) were successfully grown onto a glass substrate using a seed-mediated growth procedure. The nanostructure of the Au@AgNIFs was confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The UV-Vis spectra of the Au@AgNIFs exhibited a broad absorption in the visible range from 300 to 800 nm because of the surface plasmon absorption. Under simulated sunlight exposure, the temperature of optimal Au@AgNIF was increased to be 66.9 °C to meet the requirement for photothermal bacterial eradication. Furthermore, the Au@AgNIFs demonstrated a consistent photothermal effect during the cyclic on/off exposure to light. For photothermal therapy, the Au@AgNIFs revealed superior efficiency in the photothermal eradication of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). With their unique nanoisland nanostructure, the Au@AgNIFs exhibited excellent growth efficiency of bacteria in comparison with that of the bare glass substrate. The Au@AgNIFs were also validated as a surface-enhanced Raman scattering (SERS) substrate to amplify the Raman signals of E. coli and S. aureus. By integrating photothermal therapy and SERS detection, the Au@AgNIFs were revealed to be a potential platform for bacterial theranostics.
Collapse
Affiliation(s)
- Sadang Husain
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Physics, Faculty of Mathematics and Natural Science, Lambung Mangkurat University, Banjarmasin 70124, Indonesia
| | - Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Chun-You Chen
- Artificial Intelligence Research and Development Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Yang AQ, Zheng W, Chen X, Wang J, Zhou S, Gao H. Au nanorod assembly for sensitive SERS detection of airway inflammatory factors in sputum. Front Bioeng Biotechnol 2023; 11:1256340. [PMID: 38149176 PMCID: PMC10750157 DOI: 10.3389/fbioe.2023.1256340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
In this paper, we demonstrate a surface-enhanced Raman spectroscopy (SERS) biosensor based on the self-assembly of gold nanorods (AuNRs) for the specific detection of airway inflammatory factors in diluted sputum. The AuNR surface was modified with an antibody that was able to specifically recognize an airway inflammatory factor, interleukin-5 (IL-5), so that a end-to-end self-assembly system could be obtained, resulting in an order of magnitude amplification of the Raman signal and greatly improved sensitivity. Meanwhile, the outer layer of the biosensor was coated with silicon dioxide, which improved the stability of the system and facilitated its future applications. When the detected concentration was in the range of 0.1-50 pg/mL, the SERS signal generated by the sensor showed a good linear relationship with the IL-5 concentration. Moreover, it had satisfactory performance in diluted sputum and clinical subjects with asthma, which could achieve sensitive detection of the airway inflammatory factor IL-5. Overall, the developed biosensor based on the SERS effect exhibited the advantages of rapid and sensitive detecting performance, which is suitable for monitoring airway inflammatory factors in sputum.
Collapse
Affiliation(s)
- An-qi Yang
- Department of Basic Medicine, Quanzhou Medical College, Quanzhou, China
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | | - Xiaoyang Chen
- Department of Pulmonary and Critical Intensive Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiayin Wang
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shuang Zhou
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
5
|
Mu R, Li S, Wang T, Lu Z, Qin Q, Cheng SB, Yu D, Zhan J, Chen J. Electric Field Promoted Click Surface-Enhanced Raman Spectroscopy for Rapid and Specific Detection of DNA 2-Deoxyribose 5'-Aldehyde Oxidation Products in Plasma. Anal Chem 2023; 95:14324-14330. [PMID: 37713587 DOI: 10.1021/acs.analchem.3c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Rapid identification of DNA oxidative damage sites is of great significance for disease diagnosis. In this work, electric field-regulated click reaction surface-enhanced Raman spectroscopy (e-Click-SERS) was developed aiming at the rapid and specific analysis of furfural, the biomarker of oxidative damage to the 5-carbon site of DNA deoxyribose. In e-Click-SERS, cysteamine-modified porous Ag filaments (cys@p-Ag) were prepared and used as electrodes, amine-aldehyde click reaction sites, and SERS substrates. Cysteamine was controlled as an "end-on" conformation by setting the voltage of cys@p-Ag at -0.1 V, which ensures its activity in participating in the amine-aldehyde click reaction during the detection of furfural. Benefiting from this, the proposed e-Click-SERS method was found to be sensitive, rapid-responding, and interference-resistant in analyzing furfural from plasma. The method detection limits of furfural were 5 ng mL-1 in plasma, and the whole "extraction and detection" procedure was completed within 30 min with satisfactory recovery. Interference from 13 kinds of common plasma metabolites was investigated and found to not interfere with the analysis, according to the exclusive adaptation of the amine-aldehyde click reaction. Notably, the e-Click-SERS technique allows in situ analysis of biological samples, which offers great potential to be a point-of-care testing tool for detecting DNA oxidative damage.
Collapse
Affiliation(s)
- Run Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shu Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhengwei Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Chen YH, Chen CC, Lu LC, Lan CY, Chen HL, Yen TH, Wan D. Wafer-scale fibrous SERS substrates allow label-free, portable detection of food adulteration and diagnosis of pesticide poisoning. SENSORS AND ACTUATORS B: CHEMICAL 2023; 391:134035. [DOI: 10.1016/j.snb.2023.134035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
7
|
Jonker D, Srivastava K, Lafuente M, Susarrey-Arce A, van der Stam W, van den Berg A, Odijk M, Gardeniers HJ. Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones. ACS APPLIED NANO MATERIALS 2023; 6:9657-9669. [PMID: 37325012 PMCID: PMC10262153 DOI: 10.1021/acsanm.3c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In this work, we present the formation of 67 ± 6 nm diameter gold nanoparticles supported by vertically aligned shell-insulated silicon nanocones for ultralow variance SERS. The nanoparticles are obtained through discrete rotation glancing angle deposition of gold in an e-beam evaporating system. The morphology is assessed through focused ion beam tomography, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The optical properties are discussed and evaluated through reflectance measurements and finite-difference time-domain simulations. Lastly, the SERS activity is measured by benzenethiol functionalization and subsequent Raman spectroscopy in the surface scanning mode. We report a homogeneous analytical enhancement factor of 2.2 ± 0.1 × 107 (99% confidence interval for N = 400 grid spots) and made a comparison to other lithographically derived assemblies used in SERS. The strikingly low variance (4%) of our substrates facilitates its use for many potential SERS applications.
Collapse
Affiliation(s)
- Dirk Jonker
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ketki Srivastava
- BIOS,
MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marta Lafuente
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Arturo Susarrey-Arce
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ward van der Stam
- Inorganic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry
and Debye Institute for Nanomaterial Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Albert van den Berg
- BIOS,
MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mathieu Odijk
- BIOS,
MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Han J.G.E Gardeniers
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
8
|
Chia ZC, Chen YL, Chuang CH, Hsieh CH, Chen YJ, Chen KH, Huang TC, Chen MC, Huang CC. Polyphenol-assisted assembly of Au-deposited polylactic acid microneedles for SERS sensing and antibacterial photodynamic therapy. Chem Commun (Camb) 2023; 59:6339-6342. [PMID: 37186113 DOI: 10.1039/d3cc00733b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
3D SERS microneedles with self-assembled AuNPs were fabricated with tannic acid (chemical glue and reductant) on polylactic acid microneedles for in-depth chemical and biomolecular analysis, with LOD values below 200 ppb for small molecules and 102 CFU cm-2 for bacteria. The MB/Au-microneedles were used for photodynamic therapy with SERS-monitored photosensitizer degradation.
Collapse
Affiliation(s)
- Zi-Chun Chia
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Lun Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chou-Hsun Hsieh
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Ya-Jyun Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Hsu Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzu-Chi Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Mei-Chin Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
9
|
Karn-orachai K, Ngamaroonchote A. A label-free and selective SERS-based sensor for determination of ampicillin contamination in water using a fabric gold–silver alloy substrate with a handheld Raman spectrometer. NEW J CHEM 2023. [DOI: 10.1039/d2nj05346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A plasmonic Au–Ag alloy fabric substrate is developed via in situ self-assembly of Au–Ag alloy NPs on muslin fabric. An appropriate molar ratio of Au and Ag and type of substrate are proved to be key factors for selective detection of ampicillin.
Collapse
Affiliation(s)
- Kullavadee Karn-orachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Aroonsri Ngamaroonchote
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
10
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
12
|
Tang S, Liu H, Tian Y, Chen D, Gu C, Wei G, Jiang T, Zhou J. Surface-enhanced Raman scattering-based lateral flow immunoassay mediated by hydrophilic-hydrophobic Ag-modified PMMA substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120092. [PMID: 34175758 DOI: 10.1016/j.saa.2021.120092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 05/18/2023]
Abstract
Recently, it is urgent to ameliorate the accumulation and quantification performances of surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) to promote its reliable clinical application. Herein, a smart hydrophilic-hydrophobic SERS-based LFIA strip was demonstrated by decorating Ag nanoplates with hydrophilic surface onto the specific regions of hydrophobic polymethylmethacrylate (PMMA) film with Raman internal standard (IS), which can unexpectedly inhibit the "coffee-ring phenomenon". The target analytes were consequently enriched in the SERS-active Ag regions by the hydrophobic PMMA, considerably endowing the strip with amended quantitative monitoring ability. Aided by immunoprobes of flower-shaped Ag nanoplates, a limit of detection as 10 pg/mL and an outstanding correlation coefficient value (R2) of 0.992 for carcinoembryonic antigen (CEA) were obtained by utilizing this SERS-based LFIA strip, which can be conducive to clinical monitoring and will broaden the field of vision for the point-of-care diagnostic technique.
Collapse
Affiliation(s)
- Siqi Tang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Hongmei Liu
- Institute of Solid State Physics, Shanxi Datong University, Datong 037009, Shanxi, PR China
| | - Yiran Tian
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Dong Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Guodong Wei
- Materials Institute of Atomic and Molecular Science, Shanxi University of Science and Technology, Weiyang University Park, Xian 710021, Shanxi, PR China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Jun Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| |
Collapse
|
13
|
Chia ZC, Yang LX, Cheng TY, Chen YJ, Cheng HL, Hsu FT, Wang YJ, Chen YY, Huang TC, Fang YS, Huang CC. In Situ Formation of Au-Glycopolymer Nanoparticles for Surface-Enhanced Raman Scattering-Based Biosensing and Single-Cell Immunity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52295-52307. [PMID: 34706531 DOI: 10.1021/acsami.1c13647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Successful synthesis of glyconanoparticles has attracted much attention due to their various biointeractive capabilities, but it is still a challenge to understand different single-cell responses to exogenous particles among cell populations. Herein, we designed polyaniline-containing galactosylated gold nanoparticles (Au@PGlyco NPs) via in situ polymerization of ortho-nitrophenyl-β-galactoside assisted by Au nucleation. The nanogold-carrying polyaniline block produced electromagnetic enhancement in surface-enhanced Raman scattering (SERS). The underlying polymerization mechanism of ortho-nitrophenyl compounds via the formation of Au nanoparticles was investigated. Depending on how the galactoside moiety reacted with β-galactosidase derived from bacteria, the Au@PGlyco NPs-mediated SERS biosensor could detect low amounts of bacteria (∼1 × 102 CFU/mL). In addition, a high accumulation of Au@PGlyco NPs mediated the immune response of tumor-associated M2 macrophages to the immunogenic M1 macrophage transition, which was elicited by reactive oxygen levels biostimulation using single-cell SERS-combined fluorescence imaging. Our study suggested that Au@PGlyco NPs may serve as a biosensing platform with the labeling capacity on galactose-binding receptors expressed cell and immune regulation.
Collapse
Affiliation(s)
- Zi-Chun Chia
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yu Cheng
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Jyun Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Horng-Long Cheng
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzu-Chi Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Syun Fang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|