1
|
He N, Yuan Z, Wu C, Xi S, Xiong J, Huang Y, Lian G, Du Z, Liu L, Wu D, Chen Z, Tu W, Zou Z, Tong SY. Efficient Nitrate to Ammonia Conversion on Bifunctional IrCu 4 Alloy Nanoparticles. ACS NANO 2025; 19:4684-4693. [PMID: 39825843 DOI: 10.1021/acsnano.4c15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Electrochemical nitrate reduction (NO3RR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu4 alloy nanoparticles as a bifunctional catalyst to achieve efficient NO3RR and OER while suppressing the unwanted HER. This is achieved by operating the NO3RR at positive potentials using the IrCu4 catalyst, which allows a Faradaic efficiency of 93.6% for NO3RR. When applied to OER catalysis, the IrCu4 alloy also shows excellent results, with a relatively low overpotential of 260 mV at 10 mA cm-2. Stable ammonia production can be achieved for 50 h in a 16 cm2 flow electrolyzer in simulated working conditions. Our research provides a pathway for optimizing NO3RR through bifunctional catalysts in a tandem approach.
Collapse
Affiliation(s)
- Ning He
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhi Yuan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Chao Wu
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Shibo Xi
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Jingjing Xiong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Yucong Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zefan Du
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Laihao Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Dawei Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Shuk-Yin Tong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
2
|
Sun J, Qin Y, Niu X, Zhao R, Xu Z, Liu D, Zhao W, Guo L, Jiang N, Liu C, Zhang K, Zhang J, Wang Q. Ultrastable and highly active Co-vacancies-enriched IrCo bifunctional nanoalloys for proton exchange membrane water electrolysis. J Colloid Interface Sci 2024; 661:249-258. [PMID: 38301463 DOI: 10.1016/j.jcis.2024.01.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Exploring the electrocatalysts with high intrinsic activity and stability for both anode and cathode to tolerate the extremely acidic condition in proton exchange membrane water electrolyzer (PEMWE) is crucial for widespread industrial application. Herein, we constructed the bifunctional IrCox nanoalloys with abundant metal vacancies via the combination of chemical reduction and electrochemical treatment for overall water splitting. The developed IrCo0.13 exhibits ultra-low overpotentials of 238 mV for OER and 18.6 mV for HER at 10 mA cm-2 in 0.1 M HClO4, and achieves the exceptional stability of 1000 h for OER and 100 h for HER at 10 mA cm-2. Further, the cell voltage is only 1.68 V to reach a high current density of 1 A cm-2 in PEMWE with IrCo0.13 as the both cathode and anode catalytic layer, and it shows excellent corrosion resistance in acidic environment, evidenced by 415 h stable operation at 1 A cm-2. The strong electronic interactions in the Ir-Co atomic heterostructure and the in-situ generation of Co vacancies by electrochemical oxidation synergistically contribute to the enhanced activity and stability via optimizing the electronic structure of adjacent Ir active sites, enhancing the conductivity and electrochemical active surface area of the catalyst, accelerating charge transfer and kinetics. This work provides a new perspective for designing bifunctional catalysts for practical application in PEMWE.
Collapse
Affiliation(s)
- Jiuyi Sun
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Qin
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaopo Niu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rong Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhihong Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danni Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenli Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lili Guo
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Jiang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chang Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kaige Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junfeng Zhang
- Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
3
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
4
|
Jiang B, Guo Y, Sun F, Wang S, Kang Y, Xu X, Zhao J, You J, Eguchi M, Yamauchi Y, Li H. Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS NANO 2023. [PMID: 37367960 DOI: 10.1021/acsnano.3c01380] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Controlling the synthesis of metal nanostructures is one approach for catalyst engineering and performance optimization in electrocatalysis. As an emerging class of unconventional electrocatalysts, two-dimensional (2D) metallene electrocatalysts with ultrathin sheet-like morphology have gained ever-growing attention and exhibited superior performance in electrocatalysis owing to their distinctive properties originating from structural anisotropy, rich surface chemistry, and efficient mass diffusion capability. Many significant advances in synthetic methods and electrocatalytic applications for 2D metallenes have been obtained in recent years. Therefore, an in-depth review summarizing the progress in developing 2D metallenes for electrochemical applications is highly needed. Unlike most reported reviews on the 2D metallenes, this review starts by introducing the preparation of 2D metallenes based on the classification of the metals (e.g., noble metals, and non-noble metals) instead of synthetic methods. Some typical strategies for preparing each kind of metal are enumerated in detail. Then, the utilization of 2D metallenes in electrocatalytic applications, especially in the electrocatalytic conversion reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, fuel oxidation reaction, CO2 reduction reaction, and N2 reduction reaction, are comprehensively discussed. Finally, current challenges and opportunities for future research on metallenes in electrochemical energy conversion are proposed.
Collapse
Affiliation(s)
- Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Yanna Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Fengyu Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunqing Kang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Jungmok You
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Miharu Eguchi
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
5
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
6
|
Dong S, Zhang C, Yue Z, Zhang F, Zhao H, Cheng Q, Wang G, Xu J, Chen C, Zou Z, Dou Z, Yang H. Overall Design of Anode with Gradient Ordered Structure with Low Iridium Loading for Proton Exchange Membrane Water Electrolysis. NANO LETTERS 2022; 22:9434-9440. [PMID: 36469749 DOI: 10.1021/acs.nanolett.2c03461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Insufficient catalyst utilization, limited mass transport, and high ohmic resistance of the conventional membrane electrode assembly (MEA) lead to significant performance losses of proton exchange membrane water electrolysis (PEMWE). Herein we propose a novel ordered MEA based on anode with a 3D membrane/catalytic layer (CL) interface and gradient tapered arrays by the nanoimprinting method, confirmed by energy dispersive spectroscopy. Benefiting from the maximized triple-phase interface, rapid mass transport, and gradient CL by overall design, such an ordered structure with Ir loading of 0.2 mg cm-2 not only greatly increases the electrochemical active area by 4.2 times but also decreases the overpotentials of both mass transport and ohmic polarization by 13.9% and 8.7%, respectively, compared with conventional MEA with an Ir loading of 2 mg cm-2, thus ensuring a superior performance (1.801 V at 2 A cm-2) and good stability. This work provides a new strategy of designing MEA for high-performance PEMWE.
Collapse
Affiliation(s)
- Shu Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunyan Zhang
- State Grid Shanghai Municipal Electric Power Company, Shanghai 200023, China
| | - Zhouying Yue
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fengru Zhang
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hao Zhao
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qingqing Cheng
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guoliang Wang
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jianfeng Xu
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chi Chen
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhiqing Zou
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhenlan Dou
- State Grid Shanghai Municipal Electric Power Company, Shanghai 200023, China
| | - Hui Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
7
|
Sun J, Zhao R, Niu X, Xu M, Xu Z, Qin Y, Zhao W, Yang X, Han Y, Wang Q. In-situ reconstructed hollow iridium-cobalt oxide nanosphere for boosting electrocatalytic oxygen evolution in acid. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Kim KS, Park SA, Jung HD, Jung SM, Woo H, Ahn D, Park SS, Back S, Kim YT. Promoting Oxygen Evolution Reaction Induced by Synergetic Geometric and Electronic Effects of IrCo Thin-Film Electrocatalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyu-Su Kim
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Shin-Ae Park
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Dong Jung
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Sang-Mun Jung
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunje Woo
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Docheon Ahn
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 37673, Republic of Korea
| | - Sarah S. Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yong-Tae Kim
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
9
|
Tong Y, Chen P. Cobalt phosphide nanowires with adjustable iridium, realizing excellent bifunctional activity for acidic water splitting. Dalton Trans 2021; 50:7364-7371. [PMID: 33960350 DOI: 10.1039/d1dt00839k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exploration of highly active bifunctional electrocatalysts for acidic electrochemical water splitting has attracted wide attention due to their importance in polymer electrolyte membrane (PEM) electrolyzers. However, existing catalysts normally suffer from low catalytic efficiency under acidic conditions. Herein, we developed a series of Ir-doped CoP nanowires arrays on carbon cloth (Ir-CoP/CC) materials, realizing prominently improved bifunctional catalytic activity for overall water splitting in an acidic medium. The optimized Ir4-CoP/CC catalyst exhibits the smallest overpotential of 38 mV and 237 mV to reach 10 mA cm-2 for HER and OER, respectively. Through systematic experimental research, we find the best intrinsic activity belongs to Ir3-CoP/CC catalyst, which presents superior bifunctional performance with the most economical usage of Ir. As a result, the best acidic water splitting electrolyzer displays a very low voltage of 1.50 V at 10 mA cm-2. This work provides a novel strategy to develop highly active bifunctional catalysts for acidic electrochemical water splitting.
Collapse
Affiliation(s)
- Yun Tong
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha High Education Zone, Hangzhou 310018, P. R. China and Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Pengzuo Chen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Borate Anion Dopant Inducing Oxygen Vacancies over Co3O4 Nanocages for Enhanced Oxygen Evolution. Catalysts 2021. [DOI: 10.3390/catal11060659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The rational design of cost effective and highly efficient oxygen evolution reaction (OER) catalysts plays an extremely important role in promoting the commercial applications of electrochemical water splitting. Herein we reported a sacrificial template strategy for the preparation of borate anion doped Co3O4@ZIF-67 nanocages assembled with nanosheets (B-Co3O4@ZIF-67) by hydrothermal boronation of zeolitic imidazolate framework-67 (ZIF-67). During the preparation process, two different kinds of borate anion sources were found to regulate the morphological structures by tuning the etching rate between ZIF precursors and the borate anion. Moreover, borate anion doping was also found to induce oxygen vacancy defects, which is beneficial for modulating the electronic structure and accelerating electron transport. Meanwhile, the resultant B-Co3O4@ZIF-67 nanocages possess a large specific surface area, which is beneficial for the mass transfer of the electrolyte and exposing more catalytic active sites. Benefiting from the advantages above, the resultant B-Co3O4@ZIF-67 nanocages exhibit impressive OER performance with a small overpotential of 334 mV, a current density of 10 mA cm−2, a small Tafel slope of 73.88 mV dec−1, as well as long-term durability in an alkaline electrolyte.
Collapse
|
11
|
Lin X, Zhang X, Wang Z, Zhu X, Zhu J, Chen P, Lyu T, Li C, Qun Tian Z, Kang Shen P. Hyperbranched concave octahedron of PtIrCu nanocrystals with high-index facets for efficiently electrochemical ammonia oxidation reaction. J Colloid Interface Sci 2021; 601:1-11. [PMID: 34052723 DOI: 10.1016/j.jcis.2021.04.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
Ammonia oxidation reaction (AOR) via electrocatalysis is one of the most efficient ways of utilizing ammonia (a zero-carbon fuel with high hydrogen content) for renewable energy systems. However, AOR seriously suffers from the slow kinetics, and low durability due to its multi-electron transfer process and the poison of the reaction intermediates (Nads and NOads) to precious metal catalysts. Herein, hyperbranched concave octahedral nanodendrites of PtIrCu (HCOND) with high-index facets of {553}, {331} and {221} were developed for the first time using a solvothermal method. The HCOND possesses PtIr-rich edges and exhibit highly efficient AOR activity and stability in alkaline media, wherein their onset potential is 0.35 V vs.RHE, which is 60 mV and 160 mV lower than that of the PtIrCu nanoparticles (NPs) (0.41 V) and commercial Pt/C (0.51 V), respectively, and its high mass activity of 40.6 A gPtIr-1 at the 0.5 V vs.RHE is 10.3 times, 2.34 times higher than that of commercial Pt/C (3.9 A gPt-1) and PtIrCu NPs (17.3 A gPtIr-1), respectively. In addition, its peak current density (122.9 A gPtIr-1) is only reduced by 17.7% after 2000-cycles accelerated durability test. Meanwhile, the performance of PtIrCu HCOND is also better than that of other previously reported morphologies of Pt based catalysts (eg. nanoparticles, nanocubes, nanofilm, nanoflowers). The improvement is critically ascribed to unique advantages of the specific HCOND structure including PtIr rich surface, high-index faceted nanodendrites, strong lattice strain and electronic effects. These characteristics endow the HCOND with great promise to reduce Pt and Ir loading dramatically in the practical application of direct ammonia fuel cells.
Collapse
Affiliation(s)
- Xu Lin
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Guangxi University, Nanning, 530004, China
| | - Xiaoran Zhang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Guangxi University, Nanning, 530004, China
| | - Zhen Wang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Guangxi University, Nanning, 530004, China
| | - Xinxin Zhu
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Guangxi University, Nanning, 530004, China
| | - Jinhui Zhu
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Guangxi University, Nanning, 530004, China
| | - Pinsong Chen
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Guangxi University, Nanning, 530004, China
| | - Taiyu Lyu
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Guangxi University, Nanning, 530004, China
| | - Changzheng Li
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Zhi Qun Tian
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Guangxi University, Nanning, 530004, China.
| | - Pei Kang Shen
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Guangxi University, Nanning, 530004, China
| |
Collapse
|