1
|
Stransky F, Kostrz D, Follenfant M, Pomplun S, Meyners C, Strick T, Hausch F, Gosse C. Use of DNA forceps to measure receptor-ligand dissociation equilibrium constants in a single-molecule competition assay. Methods Enzymol 2024; 694:51-82. [PMID: 38492958 DOI: 10.1016/bs.mie.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements. A sensor is built by engrafting a receptor and a ligand onto a flexible dsDNA scaffold and mounting this assembly on magnetic tweezers. This way, looking at the position of the magnetic bead enables one to determine in real-time if the two molecular partners are associated or not. Next, to quantify the affinity of the scrutinized single-receptor for a given competitor, various amounts of the latter molecule are introduced in solution and the equilibrium response of the sensor is monitored throughout the titration protocol. Proofs of concept are established for the binding of three rapamycin analogs to the FKBP12 cis-trans prolyl isomerase. For each of these drugs the mean affinity constant obtained on a ten of individual receptors agrees with the one previously determined in a bulk assay. Furthermore, experimental contingencies are sufficient to explain the dispersion observed over the single-molecule values.
Collapse
Affiliation(s)
- François Stransky
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Sebastian Pomplun
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Wang S, Liu Y, Liu R, Xie L, Yang H, Ge S, Yu J. Strand displacement amplification triggered 3D DNA roller assisted CRISPR/Cas12a electrochemiluminescence cascaded signal amplification for sensitive detection of Ec-16S rDNA. Anal Chim Acta 2024; 1291:342213. [PMID: 38280789 DOI: 10.1016/j.aca.2024.342213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Escherichia coli can cause gastrointestinal infection, urinary tract infection and other infectious diseases. Accurate detection of Escherichia coli 16S rDNA (Ec-16S rDNA) in clinical practice is of great significance for the identification and treatment of related diseases. At present, there are various types of sensors that can achieve accurate detection of Ec-16S rDNA. Electrochemiluminescence (ECL) has attracted considerable attention from researchers, which causes excellent performance in bioanalysis. Based on the previous research, it is significance to develop a novel, sensitive and efficient ECL biosensor. RESULTS In this work, an ECL biosensor for the detection of Ec-16S rDNA was constructed by integrating CRISPR/Cas12a technology with the cascade signal amplification strategy consisting of strand displacement amplification (SDA) and dual-particle three-dimensional (3D) DNA rollers. The amplification products of SDA triggered the operation of the DNA rollers, and the products generated by the DNA rollers activated CRISPR/Cas12a to cleave the signal probe, thereby realizing the change of the ECL signal. The cascade amplification strategy realized the exponential amplification of the target signal and greatly improved the sensitivity. Manganese dioxide nanoflowers (MnO2 NFs) as a co-reaction promoter effectively enhanced the ECL intensity of tin disulfide quantum dots (SnS2 QDs). A new ternary ECL system (SnS2 QDs/S2O82-/MnO2 NFs) was prepared, which made the change of ECL intensity of biosensor more significant. The proposed biosensor had a response range of 100 aM-10 nM and a detection limit of 27.29 aM (S/N = 3). SIGNIFICANCE AND NOVELTY Herein, the cascade signal amplification strategy formed by SDA and dual-particle 3D DNA rollers enabled the ECL biosensor to have high sensitivity and low detection limit. At the same time, the cascade signal amplification strategy was integrated with CRISPR/Cas12a to enable the biosensor to efficiently detect the target. It can provide a new idea for the detection of Ec-16S rDNA in disease diagnosis and clinical analysis.
Collapse
Affiliation(s)
- Shujing Wang
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Yaqi Liu
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Ruifang Liu
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China.
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
3
|
Schellnhuber K, Blass J, Hübner H, Gallei M, Bennewitz R. Single-Polymer Friction Force Microscopy of dsDNA Interacting with a Nanoporous Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:968-974. [PMID: 38117751 PMCID: PMC10786032 DOI: 10.1021/acs.langmuir.3c03190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Surface-grafted polymers can reduce friction between solids in liquids by compensating the normal load with osmotic pressure, but they can also contribute to friction when fluctuating polymers entangle with the sliding counter face. We have measured forces acting on a single fluctuating double-stranded DNA polymer, which is attached to the tip of an atomic force microscope and interacts intermittently with nanometer-scale methylated pores of a self-assembled polystyrene-block-poly(4-vinylpyridine) membrane. Rare binding of the polymer into the pores is followed by a stretching of the polymer between the laterally moving tip and the surface and by a force-induced detachment. We present results for the velocity dependence of detachment forces and of attachment frequency and discuss them in terms of rare excursions of the polymer beyond its equilibrium configuration.
Collapse
Affiliation(s)
- Kordula Schellnhuber
- INM—Leibniz
Institute for New Materials, 66123 Saarbrücken, Germany
- Department
of Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Johanna Blass
- INM—Leibniz
Institute for New Materials, 66123 Saarbrücken, Germany
| | - Hanna Hübner
- Polymer
Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Polymer
Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Saarene,
Saarland Center of Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Roland Bennewitz
- INM—Leibniz
Institute for New Materials, 66123 Saarbrücken, Germany
- Department
of Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
He L, Charron M, Mensing P, Briggs K, Adams J, de Haan H, Tabard-Cossa V. DNA origami characterized via a solid-state nanopore: insights into nanostructure dimensions, rigidity and yield. NANOSCALE 2023; 15:14043-14054. [PMID: 37580994 DOI: 10.1039/d3nr01873c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Due to their programmability via specific base pairing, self-assembled DNA origami structures have proven to be useful for a wide variety of applications, including diagnostics, molecular computation, drug delivery, and therapeutics. Measuring and characterizing these structures is therefore of great interest and an important part of quality control. Here, we show the extent to which DNA nanostructures can be characterized by a solid-state nanopore; a non-destructive, label-free, single-molecule sensor capable of electrically detecting and characterizing charged biomolecules. We demonstrate that in addition to geometrical dimensions, nanopore sensing can provide information on the mechanical properties, assembly yield, and stability of DNA nanostructures. For this work, we use a model structure consisting of a 3 helix-bundle (3HB), i.e. three interconnected DNA double helices using a M13 scaffold folded twice on itself by short DNA staple strands, and translocate it through solid-state nanopores fabricated by controlled breakdown. We present detailed analysis of the passage characteristics of 3HB structures through nanopores under different experimental conditions which suggest that segments of locally higher flexibility are present along the nanostructure contour that allow for the otherwise rigid 3HB to fold inside nanopores. By characterizing partially melted 3HB structures, we find that locally flexible segments are likely due to short staple oligomers missing from the fully assembled structure. The 3HB used herein is a prototypical example to establish nanopores as a sensitive, non-destructive, and label-free alternative to conventional techniques such as gel electrophoresis with which to characterize DNA nanostructures.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Martin Charron
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Philipp Mensing
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Jonathan Adams
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Hendrick de Haan
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | | |
Collapse
|
5
|
Wang YJ, Valotteau C, Aimard A, Villanueva L, Kostrz D, Follenfant M, Strick T, Chames P, Rico F, Gosse C, Limozin L. Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds. Biophys J 2023; 122:2518-2530. [PMID: 37290437 PMCID: PMC10323022 DOI: 10.1016/j.bpj.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Single-molecule data are of great significance in biology, chemistry, and medicine. However, new experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are still needed. Acoustic force spectroscopy is an emerging manipulation technique which generates acoustic waves to apply force in parallel on multiple microbeads tethered to a surface. We here exploit this configuration in combination with the recently developed modular junctured-DNA scaffold that has been designed to study protein-protein interactions at the single-molecule level. By applying repetitive constant force steps on the FKBP12-rapamycin-FRB complex, we measure its unbinding kinetics under force at the single-bond level. Special efforts are made in analyzing the data to identify potential pitfalls. We propose a calibration method allowing in situ force determination during the course of the unbinding measurement. We compare our results with well-established techniques, such as magnetic tweezers, to ensure their accuracy. We also apply our strategy to study the force-dependent rupture of a single-domain antibody with its antigen. Overall, we get a good agreement with the published parameters that have been obtained at zero force and population level. Thus, our technique offers single-molecule precision for multiplexed measurements of interactions of biotechnological and medical interest.
Collapse
Affiliation(s)
- Yong Jian Wang
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| | - Claire Valotteau
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Adrien Aimard
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Lorenzo Villanueva
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Patrick Chames
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Felix Rico
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| |
Collapse
|