1
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
2
|
Li F, Shen J, Guan C, Xie Y, Wang Z, Lin S, Chen J, Zhu J. Exploring near-field sensing efficiency of complementary plasmonic metasurfaces for immunodetection of tumor markers. Biosens Bioelectron 2022; 203:114038. [PMID: 35121450 DOI: 10.1016/j.bios.2022.114038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Plasmonic metasurface biosensors have great potential on label-free high-throughput clinical detection of human tumor markers. In the past decades, nanopillar and nanohole metasurfaces have become the common choices for plasmonic biosensing, because they typically enable universal simple large-area nanopatterns via a low-cost reproducible fabrication manner. The two kinds of metasurfaces have the complementary shapes and are used to be assumed as the same type of two-dimensional plasmonic nanograting for biosensing. Up to date, there is still a lack of comparison study on their biosensing performance, which is critical to guide their better applications on tumor marker detection. In this study, we compare the bulk/surface refractive index and sensitivity of plasmonic nanopillar (PNP) and plasmonic nanohole (PNH) metasurfaces in order to evaluate their biosensing capabilities. The sensing physics about their space near-field utilization is systematically revealed. The PNH metasurface demonstrates a higher biomolecule sensitivity versus the complementary PNP metasurface, and its limit of detection for bovine serum albumin reaches ∼0.078 ng/mL, which implies a greater potential of detecting cancer biomarkers. We further adopt the PNH metasurfaces for immunoassay of three typical tumor markers by testing clinical human serum samples. The results imply that the immunodetection of alpha-fetoprotein has the most optimal sensing efficiency with the lowest detection concentration (<5 IU/mL), which is much lower than its clinical diagnosis threshold of ∼16.5 IU/mL for medical examination. Our work has not only illuminated the distinct biosensing properties of complementary metasurfaces, but also provided a promising way to boost plasmonic biosensing for point-of-care testing.
Collapse
Affiliation(s)
- Fajun Li
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Jiaqing Shen
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Chaoheng Guan
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Yinong Xie
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Zhenbiao Wang
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Shaowei Lin
- The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Science, Xiamen University, Xiamen, 361003, China
| | - Jinfeng Zhu
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
3
|
Agrawal AK, Ninawe A, Dhawan A. Nanostructured plasmonic chips employing nanopillar and nanoring hole arrays for enhanced sensitivity of SPR-based biosensing. RSC Adv 2021; 12:929-938. [PMID: 35425128 PMCID: PMC8978836 DOI: 10.1039/d1ra07937a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/12/2021] [Indexed: 01/12/2023] Open
Abstract
We present a theoretical analysis of the different nanostructured plasmonic sensor chips-consisting of plasmonic nanostructures present on the surface of plasmonic thin films-interrogated using the Kretschmann configuration for highly sensitive localized sensing, with high tunability from the visible to the infrared regions. Rigorous coupled-wave analysis is performed to analyze all the proposed nanostructured sensor chips and compare their sensing performance. The sensitivity parameters are defined to focus on the detection of a thin layer of biomolecules on the surface of nanostructures. The dimensions of the nanostructures and the incident angle shift the plasmon resonance wavelengths and can be used to tune the operating wavelength. The nanostructured films create local regions of high electric fields, which results in enhanced sensitivity of the proposed structures. The proposed sensors can be used in surface plasmon resonance imaging to detect multiple biomolecules in a single measurement. An extremely high surface sensitivity and figure of merit (FOMS) of 91 nm nm-1 and 0.59 nm-1 has been found, respectively, for one of the proposed nanostructured sensing platforms. Moreover, we demonstrate a very high differential reflectance of 55% per nm thickness of the biolayer.
Collapse
Affiliation(s)
- Ajay Kumar Agrawal
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Akanksha Ninawe
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Anuj Dhawan
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|