1
|
Han L, Mu W, Wei S, Liaw PK, Raabe D. Sustainable high-entropy materials? SCIENCE ADVANCES 2024; 10:eads3926. [PMID: 39661670 PMCID: PMC11633748 DOI: 10.1126/sciadv.ads3926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
High-entropy materials (HEMs) show inspiring structural and functional properties due to their multi-elemental compositions. However, most HEMs are burdened by cost-, energy-, and carbon-intensive extraction, synthesis, and manufacturing protocols. Recycling and reusing HEMs are challenging because their design relies on high fractions of expensive and limited-supply elements in massive solid solutions. Therefore, we review the basic sustainability aspects of HEMs. Solutions include using feedstock with lower carbon and energy footprints, sustainable primary synthesis routes from minerals, attenuation of the equimolar alloying rule, and a preference for scrap and dumped waste for secondary and tertiary synthesis. The high solubility, compositional flexibility, and chemical robustness of HEMs offer pathways for using higher fractions of mixed and contaminated scrap and waste feedstocks, which are not admissible for synthesizing conventional materials. We also discuss thermodynamic and kinetic design strategies to reconcile good material properties with high impurity tolerance and variable compositions.
Collapse
Affiliation(s)
- Liuliu Han
- Max Planck Institute for Sustainable Materials, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Wangzhong Mu
- Engineering Materials, Department of Engineering Science and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Shaolou Wei
- Max Planck Institute for Sustainable Materials, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Peter K. Liaw
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Dierk Raabe
- Max Planck Institute for Sustainable Materials, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| |
Collapse
|
2
|
Huang Z, Li T, Li B, Dong Q, Smith J, Li S, Xu L, Wang G, Chi M, Hu L. Tailoring Local Chemical Ordering via Elemental Tuning in High-Entropy Alloys. J Am Chem Soc 2024; 146:2167-2173. [PMID: 38214166 DOI: 10.1021/jacs.3c12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Due to the large multi-elemental space desired for property screening and optimization, high-entropy alloys (HEAs) hold greater potential over conventional alloys for a range of applications, such as structural materials, energy conversion, and catalysis. However, the relationship between the HEA composition and its local structural/elemental configuration is not well understood, particularly in noble-metal-based HEA nanomaterials, hindering the design and development of nano-HEAs in energy conversion and catalysis applications. Herein, we determined precise atomic-level structural and elemental arrangements in model HEAs composed of RhPtPdFeCo and RuPtPdFeCo to unveil their local characteristics. Notably, by changing just one constituent element in the HEA (Rh to Ru), we found dramatic changes in the elemental arrangement from complete random mixing to a local single elemental ordering feature. Additionally, we demonstrate that the local ordering in RuPtPdFeCo can be further controlled by varying the Ru concentration, allowing us to toggle between local Ru clustering and distinct heterostructures in multicomponent systems. Overall, our study presents a practical approach for manipulating local atomic structures and elemental arrangements in noble-metal-based HEA systems, which could provide in-depth knowledge to mechanistically understand the functionality of noble-metal-based HEA nanomaterials in practical applications.
Collapse
Affiliation(s)
- Zhennan Huang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Smith
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shuke Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Miaofang Chi
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Ashraf S, Liu Y, Wei H, Shen R, Zhang H, Wu X, Mehdi S, Liu T, Li B. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303031. [PMID: 37356067 DOI: 10.1002/smll.202303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/27/2023]
Abstract
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Collapse
Affiliation(s)
- Saima Ashraf
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Cechanaviciute IA, Antony RP, Krysiak OA, Quast T, Dieckhöfer S, Saddeler S, Telaar P, Chen YT, Muhler M, Schuhmann W. Scalable Synthesis of Multi-Metal Electrocatalyst Powders and Electrodes and their Application for Oxygen Evolution and Water Splitting. Angew Chem Int Ed Engl 2023; 62:e202218493. [PMID: 36640442 DOI: 10.1002/anie.202218493] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Multi-metal electrocatalysts provide nearly unlimited catalytic possibilities arising from synergistic element interactions. We propose a polymer/metal precursor spraying technique that can easily be adapted to produce a large variety of compositional different multi-metal catalyst materials. To demonstrate this, 11 catalysts were synthesized, characterized, and investigated for the oxygen evolution reaction (OER). Further investigation of the most active OER catalyst, namely CoNiFeMoCr, revealed a polycrystalline structure, and operando Raman measurements indicate that multiple active sites are participating in the reaction. Moreover, Ni foam-supported CoNiFeMoCr electrodes were developed and applied for water splitting in flow-through electrolysis cells with electrolyte gaps and in zero-gap membrane electrode assembly (MEA) configurations. The proposed alkaline MEA-type electrolyzers reached up to 3 A cm-2 , and 24 h measurements demonstrated no loss of current density of 1 A cm-2 .
Collapse
Affiliation(s)
- Ieva A Cechanaviciute
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Rajini P Antony
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Olga A Krysiak
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Sascha Saddeler
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Pascal Telaar
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Yen-Ting Chen
- The Center for Solvation Science ZEMOS, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
5
|
Garzón Manjón A, Vega-Paredes M, Berova V, Gänsler T, Schwarz T, Rivas Rivas NA, Hengge K, Jurzinsky T, Scheu C. Insights into the performance and degradation of Ru@Pt core-shell catalysts for fuel cells by advanced (scanning) transmission electron microscopy. NANOSCALE 2022; 14:18060-18069. [PMID: 36448460 DOI: 10.1039/d2nr04869h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ru@Pt core-shell nanoparticles are currently being explored as carbon monoxide tolerant anode catalysts for proton exchange membrane fuel cells. However, little is known about their degradation under fuel cell conditions. In the present work, two types of Ru@Pt nanoparticles with nominal shell thicknesses of 1 (Ru@1Pt) and 2 (Ru@2Pt) Pt monolayers are studied as synthesized and after accelerated stress tests. These stress tests were designed to imitate the degradation occurring under fuel cell operating conditions. Our advanced (scanning) transmission electron microscopy characterization explains the superior initial electrochemical performance of Ru@1Pt. Moreover, the 3D reconstruction of the Pt shell by electron tomography reveals an incomplete shell for both samples, which results in a less stable Ru metal being exposed to an electrolyte. The degree of coverage of the Ru cores provides insights into the higher stability of Ru@2Pt during the accelerated stress tests. Our results explain how to maximize the initial performance of Ru@Pt-type catalysts, without compromising their stability under fuel cell conditions.
Collapse
Affiliation(s)
- Alba Garzón Manjón
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Miquel Vega-Paredes
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Viktoriya Berova
- Freudenberg Fuel Cell e-Power Systems GmbH, Bayerwaldstraße 3, 81737 München, Germany
| | - Thomas Gänsler
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Torsten Schwarz
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Nicolas A Rivas Rivas
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Katharina Hengge
- Freudenberg Fuel Cell e-Power Systems GmbH, Bayerwaldstraße 3, 81737 München, Germany
| | - Tilman Jurzinsky
- Freudenberg Fuel Cell e-Power Systems GmbH, Bayerwaldstraße 3, 81737 München, Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| |
Collapse
|
6
|
Pavithra CLP, Dey SR. Advances on multi‐dimensional high‐entropy alloy nanoarchitectures: Unconventional strategies and prospects. NANO SELECT 2022. [DOI: 10.1002/nano.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chokkakula L. P. Pavithra
- Combinatorial Materials Laboratory Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Suhash Ranjan Dey
- Combinatorial Materials Laboratory Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| |
Collapse
|
7
|
Akiyoshi K, Watanabe Y, Kameyama T, Kawawaki T, Negishi Y, Kuwabata S, Torimoto T. Composition control of alloy nanoparticles consisting of bulk-immiscible Au and Rh metals via an ionic liquid/metal sputtering technique for improving their electrocatalytic activity. Phys Chem Chem Phys 2022; 24:24335-24344. [PMID: 36177988 DOI: 10.1039/d2cp01461k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AuRh bimetallic alloy nanoparticles (NPs) were successfully prepared by simultaneous sputtering of Au and Rh in a room-temperature ionic liquid (RTIL) of N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4). Bimetallic AuRh alloy NPs of 1-2 nm in size were formed in the RTIL. The alloy composition was controllable by changing the surface areas of Au and Rh plates used as sputtering targets. Loading thus-obtained AuRh NPs on carbon black (CB) powders increased the size of AuRh NPs to ca. 2-8 nm, depending on the Au/Rh ratio. The electrocatalytic activity for oxygen reduction reaction (ORR) of AuRh NP-loaded CB catalysts showed a volcano-type dependence on their composition, in which AuRh NPs with Au surface coverage of 62% exhibited the optimal ORR activity, the specific activity being ca. 5 times higher than that of pure Rh NPs.
Collapse
Affiliation(s)
- Kazutaka Akiyoshi
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Yumezo Watanabe
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Susumu Kuwabata
- Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
8
|
Sergievskaya A, Chauvin A, Konstantinidis S. Sputtering onto liquids: a critical review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:10-53. [PMID: 35059275 PMCID: PMC8744456 DOI: 10.3762/bjnano.13.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/07/2021] [Indexed: 05/03/2023]
Abstract
Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.
Collapse
Affiliation(s)
- Anastasiya Sergievskaya
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Adrien Chauvin
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
| | - Stephanos Konstantinidis
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
9
|
Mudring AV, Hammond O. Ionic Liquids and Deep Eutectics as a Transformative Platform for the Synthesis of Nanomaterials. Chem Commun (Camb) 2022; 58:3865-3892. [DOI: 10.1039/d1cc06543b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) are becoming a revolutionary synthesis medium for inorganic nanomaterials, permitting more efficient, safer and environmentally benign preparation of high quality products. A smart combination of ILs and...
Collapse
|
10
|
Nguyen MT, Deng L, Yonezawa T. Control of nanoparticles synthesized via vacuum sputter deposition onto liquids: a review. SOFT MATTER 2021; 18:19-47. [PMID: 34901989 DOI: 10.1039/d1sm01002f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sputter deposition onto a low volatile liquid matrix is a recently developed green synthesis method for metal/metal oxide nanoparticles (NPs). In this review, we introduce the synthesis method and highlight its unique features emerging from the combination of the sputter deposition and the ability of the liquid matrix to regulate particle growth. Then, manipulating the synthesis parameters to control the particle size, composition, morphology, and crystal structure of NPs is presented. Subsequently, we evaluate the key experimental factors governing the particle characteristics and the formation of monometallic and alloy NPs to provide overall directions and insights into the preparation of NPs with desired properties. Following that, the current understanding of the growth and formation mechanism of sputtered particles in liquid media, in particular, ionic liquids and liquid polymers, during and after sputtering is emphasized. Finally, we discuss the challenges that remain and share our perspectives on the future prospects of the synthesis method and the obtained NPs.
Collapse
Affiliation(s)
- Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Lianlian Deng
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
11
|
Löffler T, Ludwig A, Rossmeisl J, Schuhmann W. Was macht Hochentropie‐Legierungen zu außergewöhnlichen Elektrokatalysateuren? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tobias Löffler
- Analytische Chemie – Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
- Lehrstuhl Materials Discovery and Interfaces Institut für Werkstoffe Fakultät für Maschinenbau Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
- Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe (ZGH) Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Alfred Ludwig
- Lehrstuhl Materials Discovery and Interfaces Institut für Werkstoffe Fakultät für Maschinenbau Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
- Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe (ZGH) Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Dänemark
| | - Wolfgang Schuhmann
- Analytische Chemie – Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
12
|
Performance comparison of FeNiCo, FeNiCu and FeNiCoCu alloy particles as catalyst material for polymer electrolyte membrane fuel cells. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02087-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Löffler T, Ludwig A, Rossmeisl J, Schuhmann W. What Makes High-Entropy Alloys Exceptional Electrocatalysts? Angew Chem Int Ed Engl 2021; 60:26894-26903. [PMID: 34436810 PMCID: PMC9292432 DOI: 10.1002/anie.202109212] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 12/17/2022]
Abstract
The formation of a vast number of different multielement active sites in compositionally complex solid solution materials, often more generally termed high‐entropy alloys, offers new and unique concepts in catalyst design, which mitigate existing limitations and change the view on structure–activity relations. We discuss these concepts by summarising the currently existing fundamental knowledge and critically assess the chances and limitations of this material class, also highlighting design strategies. A roadmap is proposed, illustrating which of the characteristic concepts could be exploited using which strategy, and which breakthroughs might be possible to guide future research in this highly promising material class for (electro)catalysis.
Collapse
Affiliation(s)
- Tobias Löffler
- Analytical Chemistry - Center For Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.,Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.,Center for Interface-Dominated High-Performance Materials (ZGH), Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.,Center for Interface-Dominated High-Performance Materials (ZGH), Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København, Denmark
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center For Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
14
|
Tetteh EB, Banko L, Krysiak OA, Löffler T, Xiao B, Varhade S, Schumacher S, Savan A, Andronescu C, Ludwig A, Schuhmann W. Zooming‐in – Visualization of active site heterogeneity in high entropy alloy electrocatalysts using scanning electrochemical cell microscopy. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Emmanuel Batsa Tetteh
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Lars Banko
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Olga A. Krysiak
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Tobias Löffler
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Swapnil Varhade
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Simon Schumacher
- Technical Chemistry III and CENIDE Center for Nanointegration Faculty of Chemistry University of Duisburg‐Essen Carl‐Benz‐Straße 199 Duisburg Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Corina Andronescu
- Technical Chemistry III and CENIDE Center for Nanointegration Faculty of Chemistry University of Duisburg‐Essen Carl‐Benz‐Straße 199 Duisburg Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| |
Collapse
|
15
|
Sun Y, Dai S. High-entropy materials for catalysis: A new frontier. SCIENCE ADVANCES 2021; 7:eabg1600. [PMID: 33980494 PMCID: PMC8115918 DOI: 10.1126/sciadv.abg1600] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/25/2021] [Indexed: 05/19/2023]
Abstract
Entropy plays a pivotal role in catalysis, and extensive research efforts have been directed to understanding the enthalpy-entropy relationship that defines the reaction pathways of molecular species. On the other side, surface of the catalysts, entropic effects have been rarely investigated because of the difficulty in deciphering the increased complexities in multicomponent systems. Recent advances in high-entropy materials (HEMs) have triggered broad interests in exploring entropy-stabilized systems for catalysis, where the enhanced configurational entropy affords a virtually unlimited scope for tailoring the structures and properties of HEMs. In this review, we summarize recent progress in the discovery and design of HEMs for catalysis. The correlation between compositional and structural engineering and optimization of the catalytic behaviors is highlighted for high-entropy alloys, oxides, and beyond. Tuning composition and configuration of HEMs introduces untapped opportunities for accessing better catalysts and resolving issues that are considered challenging in conventional, simple systems.
Collapse
Affiliation(s)
- Yifan Sun
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|