1
|
Fan C, Dong W, Saira Y, Tang Y, Fu G, Lee JM. Rare-Earth-Modified Metal-Organic Frameworks and Derivatives for Photo/Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302738. [PMID: 37291982 DOI: 10.1002/smll.202302738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) and their derivatives have attracted much attention in the field of photo/electrocatalysis owing to their ultrahigh porosity, tunable properties, and superior coordination ability. Regulating the valence electronic structure and coordination environment of MOFs is an effective way to enhance their intrinsic catalytic performance. Rare earth (RE) elements with 4f orbital occupancy provide an opportunity to evoke electron rearrangement, accelerate charged carrier transport, and synergize the surface adsorption of catalysts. Therefore, the integration of RE with MOFs makes it possible to optimize their electronic structure and coordination environment, resulting in enhanced catalytic performance. In this review, progress in current research on the use of RE-modified MOFs and their derivatives for photo/electrocatalysis is summarized and discussed. First, the theoretical advantages of RE in MOF modification are introduced, with a focus on the roles of 4f orbital occupancy and RE ion organic coordination ligands. Then, the application of RE-modified MOFs and their derivatives in photo/electrocatalysis is systematically discussed. Finally, research challenges, future opportunities, and prospects for RE-MOFs are also discussed.
Collapse
Affiliation(s)
- Chuang Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenrou Dong
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yousaf Saira
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technology University, Singapore, 637459, Singapore
| |
Collapse
|
2
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
3
|
Wan Y, Chang Z, Xie X, Li J, Chai S, Zhou S, He Q, Fu C, Feng M, Cao G, Liang S, Pan A. In/Ce Co-doped Li 3VO 4 and Nitrogen-modified Carbon Nanofiber Composites as Advanced Anode Materials for Lithium-ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52702-52714. [PMID: 36394543 DOI: 10.1021/acsami.2c10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Li3VO4 (LVO) is considered as a novel alternative anode material for lithium-ion batteries (LIBs) due to its high capacity and good safety. However, the inferior electronic conductivity impedes its further application. Here, nanofibers (nLICVO/NC) with In/Ce co-doped Li3VO4 strengthened by nitrogen-modified carbon are prepared. Density functional theory calculations demonstrate that In/Ce co-doping can substantially reduce the LVO band gap and achieve orders of magnitude increase (from 2.79 × 10-4 to 1.38 × 10-2 S cm-1) in the electronic conductivity of LVO. Moreover, the carbon-based nanofibers incorporated with 5LICVO nanoparticles can not only buffer the structural strain but also form a good framework for electron transport. This 5LICVO/NC material delivers high reversible capacities of 386.3 and 277.9 mA h g-1 at 0.1 and 5 A g-1, respectively. Furthermore, high discharge capacities of 335 and 259.5 mA h g-1 can be retained after 1200 and 4000 cycles at 0.5 and 1.6 A g-1, respectively (with the corresponding capacity retention of 98.4 and 78.7%, respectively). When the 5LICVO/NC anode assembles with commercial LiNi1/3Co1/3Mn1/3O2 (NCM111) into a full cell, a high discharge capacity of 191.9 mA h g-1 can be retained after 600 cycles at 1 A g-1, implying an inspiring potential for practical application in high-efficiency LIBs.
Collapse
Affiliation(s)
- Yuanlang Wan
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan410083, China
| | - Zhi Chang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan410083, China
| | - Xuefang Xie
- School of Physical Science and Technology, Xinjiang University, Urumqi830046, China
| | - Jialin Li
- School of Physics and Electronics, Key Laboratory of Super Micro-structure and Ultrafast Process of Hunan Province, Central South University, Changsha, Hunan410083, China
| | - Simin Chai
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan410083, China
| | - Shuang Zhou
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan410083, China
| | - Qiong He
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan410083, China
| | - Chunyan Fu
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan410083, China
| | - Mingyang Feng
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan410083, China
| | - Guozhong Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington98195, United States
| | - Shuquan Liang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan410083, China
| | - Anqiang Pan
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan410083, China
| |
Collapse
|
4
|
Vasile R, Godoy AA, Puente Orench I, Nemes NM, de la Peña O’Shea VA, Gutiérrez-Puebla E, Martínez JL, Monge MÁ, Gándara F. Influence of the Synthesis and Crystallization Processes on the Cation Distribution in a Series of Multivariate Rare-Earth Metal-Organic Frameworks and Their Magnetic Characterization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7029-7041. [PMID: 35965890 PMCID: PMC9367679 DOI: 10.1021/acs.chemmater.2c01481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The incorporation of multiple metal atoms in multivariate metal-organic frameworks is typically carried out through a one-pot synthesis procedure that involves the simultaneous reaction of the selected elements with the organic linkers. In order to attain control over the distribution of the elements and to be able to produce materials with controllable metal combinations, it is required to understand the synthetic and crystallization processes. In this work, we have completed a study with the RPF-4 MOF family, which is made of various rare-earth elements, to investigate and determine how the different initial combinations of metal cations result in different atomic distributions in the obtained materials. Thus, we have found that for equimolar combinations involving lanthanum and another rare-earth element, such as ytterbium, gadolinium, or dysprosium, a compositional segregation takes place in the products, resulting in crystals with different compositions. On the contrary, binary combinations of ytterbium, gadolinium, erbium, and dysprosium result in homogeneous distributions. This dissimilar behavior is ascribed to differences in the crystallization pathways through which the MOF is formed. Along with the synthetic and crystallization study and considering the structural features of this MOF family, we also disclose here a comprehensive characterization of the magnetic properties of the compounds and the heat capacity behavior under different external magnetic fields.
Collapse
Affiliation(s)
- Raluca
Loredana Vasile
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Agustín Alejandro Godoy
- Instituto
de Investigación en Tecnología Química (INTEQUI-CONICET),
Universidad Nacional de San Luis, Alte. Brown 1450, D5700HGC San Luis, Argentina
| | - Inés Puente Orench
- Institut
Laue Langevin, 71 Avenue
des Martyrs, Grenoble 38042, France
- Instituto
de Nanociencia y Materiales de Aragón (INMA-CSIC), Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Norbert M. Nemes
- Departamento
de Física de Materiales, Facultad Físicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Víctor A. de la Peña O’Shea
- Photoactivated
Processes Unit IMDEA Energy Institute, Móstoles Technology Park, Avenida Ramón
de la Sagra 3, Móstoles, Madrid 28935, Spain
| | - Enrique Gutiérrez-Puebla
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Jose Luis Martínez
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - M. Ángeles Monge
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Felipe Gándara
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
5
|
Liu M, Liang J, Tian Y, Liu Z. Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance. CrystEngComm 2022. [DOI: 10.1039/d1ce01567b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is a great route designing new MOF ferroelectrics to enrich the scope of ferroelectrics or improving the ferroelectric performance to enhance the opportunity of applications through the strategy of post-synthetic modification (PSM).
Collapse
Affiliation(s)
- Meiying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Jingjing Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yadong Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
6
|
Zhao S, Qu G, Wang C, Zhang Y, Li C, Li X, Sun J, Leng J, Xu X. Towards advanced aqueous zinc battery by exploiting synergistic effects between crystalline phosphide and amorphous phosphate. NANOSCALE 2021; 13:18586-18595. [PMID: 34730594 DOI: 10.1039/d1nr05903c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-performance aqueous zinc batteries are expected to be realized, rooting from component synergistic effects of the hierarchical composite electrode materials. Herein, hierarchical crystalline Ni-Co phosphide coated with amorphous phosphate nanoarrays (C-NiCoP@A-NiCoPO4) self-supporting on the Ni foam are constructed as cathode material of an aqueous zinc battery. In this unique core-shell structure, the hexagonal phosphide with high conductivity offers ultra-fast electronic transmission and amorphous phosphate with high stability, and open-framework provides more favorable ion diffusivity and a stable protective barrier. The synergistic effects of this intriguing core-shell structure endow the electrode material with outstanding reaction kinetics and structural stability, which is theoretically confirmed by density functional theory (DFT) calculations. As a result, the C-NiCoP@A-NiCoPO4 electrode exhibits a higher specific capacity of 350.6 mA h g-1 and excellent cyclic stability with 92.6% retention after 10 000 cycles. Moreover, the C-NiCoP@A-NiCoPO4 is coupled with Zn anode to assemble an aqueous pouch battery that delivers ultra-high energy density (626.33 W h kg-1 at 1.72 kW kg-1) with extraordinary rate performance (452.05 W h kg-1 at 33.56 kW kg-1). Moreover, the corresponding quasi-solid flexible battery with polyacrylamide hydrogel electrolyte exhibits favorable durability under frequent mechanical strains, which indicates the great promise of crystalline/amorphous hierarchical electrodes in the field of energy storage.
Collapse
Affiliation(s)
- Shunshun Zhao
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, Shandong, P. R. China.
| | - Guangmeng Qu
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| | - Chenggang Wang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| | - Yujin Zhang
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, Shandong, P. R. China.
| | - Chuanlin Li
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| | - Xiaojuan Li
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| | - Jie Sun
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, Shandong, P. R. China.
| | - Jiancai Leng
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, Shandong, P. R. China.
| | - Xijin Xu
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| |
Collapse
|