1
|
Tselekidou D, Papadopoulos K, Andrikopoulos KC, Andreopoulou AK, Kallitsis JK, Logothetidis S, Laskarakis A, Gioti M. Optical, Photophysical, and Electroemission Characterization of Blue Emissive Polymers as Active Layer for OLEDs. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1623. [PMID: 39452960 PMCID: PMC11510447 DOI: 10.3390/nano14201623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Polymers containing π-conjugated segments are a diverse group of large molecules with semiconducting and emissive properties, with strong potential for use as active layers in Organic Light-Emitting Diodes (OLEDs). Stable blue-emitting materials, which are utilized as emissive layers in solution-processed OLED devices, are essential for their commercialization. Achieving balanced charge injection is challenging due to the wide bandgap between the HOMO and LUMO energy levels. This study examines the optical and photophysical characteristics of blue-emitting polymers to contribute to the understanding of the fundamental mechanisms of color purity and its stability during the operation of OLED devices. The investigated materials are a novel synthesized lab scale polymer, namely poly[(2,7-di(p-acetoxystyryl)-9-(2-ethylhexyl)-9H-carbazole-4,4'-diphenylsulfone)-co-poly(2,6-diphenylpyrydine-4,4'-diphenylsulfone] (CzCop), as well as three commercially supplied materials, namely Poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO), poly[9,9-bis(2'-ethylhexyl) fluorene-2,7-diyl] (PBEHF), and poly (9,9-n-dihexyl-2,7-fluorene-alt-9-phenyl-3,6-carbazole) (F6PC). The materials were compared to evaluate their properties using Spectroscopic Ellipsometry, Photoluminescence, and Atomic Force Microscopy (AFM). Additionally, the electrical characteristics of the OLED devices were investigated, as well as the stability of the electroluminescence emission spectrum during the device's operation. Finally, the determined optical properties, combined with their photo- and electro-emission characteristics, provided significant insights into the color stability and selectivity of each material.
Collapse
Affiliation(s)
- Despoina Tselekidou
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.P.); (S.L.); (A.L.)
| | - Kyparisis Papadopoulos
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.P.); (S.L.); (A.L.)
| | - Konstantinos C. Andrikopoulos
- Department of Chemistry, University of Patras, Caratheodory 1, University Campus, 26504 Patras, Greece; (K.C.A.); (A.K.A.); (J.K.K.)
| | - Aikaterini K. Andreopoulou
- Department of Chemistry, University of Patras, Caratheodory 1, University Campus, 26504 Patras, Greece; (K.C.A.); (A.K.A.); (J.K.K.)
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, Caratheodory 1, University Campus, 26504 Patras, Greece; (K.C.A.); (A.K.A.); (J.K.K.)
| | - Stergios Logothetidis
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.P.); (S.L.); (A.L.)
- Organic Electronic Technologies P.C. (OET), 20th KM Thessaloniki—Tagarades, 57001 Thermi, Greece
| | - Argiris Laskarakis
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.P.); (S.L.); (A.L.)
| | - Maria Gioti
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.P.); (S.L.); (A.L.)
| |
Collapse
|
2
|
Deng Y, Guo Y, Zhang Y. Aggregation of gold nanoclusters in amyloid fibers: a luminescence assay for amyloid fibrillation detection and inhibitor screening. Analyst 2024; 149:870-875. [PMID: 38170814 DOI: 10.1039/d3an01789c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Amyloid fibrillation is associated with a great variety of human diseases, such as Alzheimer's and Huntington's diseases. A fluorescence assay for amyloid fibrillation detection and inhibitor screening was developed based on the fact that the fluorescence emission of gold nanoclusters (Au NCs) is largely enhanced upon adding amyloids, such as lysozyme amyloid fibers. A good linear relationship exists between the enhanced fluorescence intensity of Au NCs and lysozyme fiber within the concentration range of 0-0.05 mg mL-1. This ultra-sensitive method can detect the protein fiber earlier than thioflavin T (THT), allowing more time for disease treatment. Furthermore, Au NCs have many advantages over the classical probe (i.e., THT), such as large Stokes shifts and low toxicity. We selected ascorbic acid as a representative inhibitor and used this method to screen inhibitors. If inhibitors are added when incubating lysozyme, the lysozyme fibrosis process will be crimped, decreasing the amount of lysozyme fibers.
Collapse
Affiliation(s)
- Yilin Deng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| | - Ying Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| |
Collapse
|
3
|
Alarfaj NA, Alabdulmonem HA, Al-Onazi WA, Al-Mohaimeed AM, El-Tohamy MF. Biogenic synthesis of ZnO and Al2O3 nanoparticles using Camellia sinensis and Origanum vulgare L. leaves extract for spectroscopic estimation of ofloxacin and ciprofloxacin in commercial formulations. PLoS One 2023; 18:e0286341. [PMID: 37906583 PMCID: PMC10617719 DOI: 10.1371/journal.pone.0286341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/14/2023] [Indexed: 11/02/2023] Open
Abstract
The current study describes the biogenic synthesis of two metal oxides zinc oxide (ZnO), aluminum oxide (Al2O3) nanoparticles using Camellia sinensis, and Origanum vulgare L. leaves extract, respectively. The synthesized metal oxide nanoparticles were investigated using spectroscopic and microscopic techniques to confirm the formation of their nanostructures. Accurate and precise spectrofluorometric probes were proposed for the quantification of Ofloxacin (OFX) and Ciprofloxacin (CPFX) in their bulk and commercial formulations. The extraordinary properties of Zinc oxide and aluminum oxide nanoparticles (ZnONPs and Al2O3NPs) enhance the fluorescence intensity in the presence of 0.5 mL and 1.0 mL of sodium dodecyl sulfate (SDS, 1.0% w/v) as organizing agent for the detection of OFX and CPFX, respectively. The optical detection of both drugs at λex/em range 250-700 nm displayed linearity with a main correlation coefficient >0.999 at 1-300 (OFX-SDS-ZnONPs) and 0.5-100 (OFX-SDS-Al2O3NPs) ng mL-1,10-400 (CPFX-SDS-ZnONPs) and 0.1-50 (CPFX-SDS-Al2O3NPs) ng mL-1. The detection and quantification limits were found to be 0.04, 0.03, and 0.02, 0.04 ng mL-1, 0.13, 0.10, and 7.24, 0.09 ng mL-1 for the above-mentioned fluorescence systems, respectively. The suggested spectrofluorometric probes were validated and potentially applied for the estimation of OFX and CPFX in their bulk and commercial formulations.
Collapse
Affiliation(s)
- Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hadeel A. Alabdulmonem
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wedad A. Al-Onazi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal M. Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Guo Y, Zhang J, Liu J, Wang N, Su X. A highly sensitive fluorescence "on-off-on" sensing platform for captopril detection based on AuNCs@ZIF-8 nanocomposite. Anal Chim Acta 2023; 1276:341649. [PMID: 37573126 DOI: 10.1016/j.aca.2023.341649] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
Here, a novel fluorescent sensing strategy is established for the detection of captopril (CP) sensitively on the basis of a nanocomposite of gold nanoclusters (AuNCs) and metal-organic framework (AuNCs@ZIF-8). The aggregation-induced emission (AIE) effect will be triggered when AuNCs is encapsulated by metal-organic framework (MOF) which served as a carrier since it limits the molecular motion of AuNCs, and the fluorescence of AuNCs greatly enhanced about 5-time after forming the nanocomposites of AuNCs@ZIF-8. The strong orange-emission at 562 nm was quenched in the presence of mercury ions through dynamic quenching. After adding captopril, the quenched fluorescence of AuNCs@ZIF-8/Hg2+ system would be restored due to the specific interaction among captopril with mercury ions. Simultaneously, the restored degree of AuNCs@ZIF-8/Hg2+ fluorescence depended on the concentration of captopril. Hence, with AuNCs@ZIF-8 serving as reporter signal, the captopril content can be monitored by an "on-off-on" fluorescence sensing mode with a linear relationship of 1-100 μM, and the limit of detection for captopril was 0.134 μM.
Collapse
Affiliation(s)
- Yongyan Guo
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Fu J, Miao Y, Zhang D, Zhang Y, Meng L, Ni X, Shen J, Qi W. Polymer-Enabled Assembly of Au Nanoclusters with Luminescence Enhancement and Macroscopic Chirality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13316-13324. [PMID: 37682809 DOI: 10.1021/acs.langmuir.3c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The construction of macroscopic chiral luminescent aggregates with well-defined structures not only contributes to the development of functional materials but also has significant implications for analyzing chiral transfer and amplification in biological systems and self-assembly systems. Meanwhile, achieving water-soluble chiral metal nanoclusters (NCs) with high photoluminescence (PL) intensity through a convenient method remains a challenge. Herein, we reported the enhanced luminescence of gold nanoclusters stabilized by D-/L-penicillamine (D-/L-AuNCs) induced by poly(allylamine hydrochloride) (PAH) through supramolecular self-assembly strategies. FT-IR spectra and zeta potential measurements revealed that supramolecular assembly was driven by the synergistic effect of hydrogen bonds and electrostatic interactions, which effectively limited the intramolecular vibration and rotation of the ligand and reduced nonradiative relaxation, thus improving the luminescence properties of nanoclusters. Interestingly, during the slow solvent evaporation process, chiral entanglement of assemblies was enhanced, forming macroscopic wheat-shaped superstructures. This study enriches the understanding of the self-assembly mechanism of nanoclusters and provides a pathway for constructing NC-based chiroptical materials.
Collapse
Affiliation(s)
- Jing Fu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Yujin Miao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Di Zhang
- Shandong Copolymer Silicone Technology Research Institute, Weifang 261000, P. R. China
| | - Yongjie Zhang
- Shandong Copolymer Silicone Technology Research Institute, Weifang 261000, P. R. China
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, P. R. China
| | - Luyao Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xinrui Ni
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jinglin Shen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Wei Qi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| |
Collapse
|
6
|
Wu W, Hu Z, Shi C, Xu R, Zhao Y, Ding Y. Construction of CdTe@γ-CD@RBD nanoprobe for Fe 3+-sensing based on FRET mechanism in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122645. [PMID: 37011440 DOI: 10.1016/j.saa.2023.122645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
A Fe3+ optical sensor (CdTe@γ-CD@RBD) has been developed by using gamma-cyclodextrin (γ-CD) as a bridge to link CdTe quantum dots (QDs) and a Rhodamine B derivative (RBD). The RBD molecule can enter the cavity of the γ-CD anchored onto the surfaces of the QDs. In the presence of Fe3+, the fluorescence resonance energy transfer (FRET) process from QDs to RBD will be initiated, rendering the nanoprobe to display a response to Fe3+. The degree of fluorescence quenching presented a satisfactory linearity between 10 and 60 μΜ with the incremental concentrations of Fe3+, and the calculated limit of detection was 2.51 μΜ. Through sample pretreatment procedures, the probe has been used in the determination of Fe3+ in human serum. The average recoveries in the spiking levels are ranged from 98.60 % to 107.20 % with a relative standard deviation of around 1.43 %-2.96 %. This finding leads to a method for fluorescent detection of Fe3+ with high sensitivity and exceptional selectivity. We believe that this study can give a new insight into the rational design and application of FRET-based nanoprobes.
Collapse
Affiliation(s)
- Wenlu Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Zhongfei Hu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Cai Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Ruoqian Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Yiming Zhao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Yujie Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
7
|
Atulbhai SV, Singhal RK, Basu H, Kailasa SK. Perspectives of different colour-emissive nanomaterials in fluorescent ink, LEDs, cell imaging, and sensing of various analytes. LUMINESCENCE 2023; 38:867-895. [PMID: 35501299 DOI: 10.1002/bio.4272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
In the past 2 decades, multicolour light-emissive nanomaterials have gained significant interest in chemical and biological sciences because of their unique optical properties. These materials have drawn much attention due to their unique characteristics towards various application fields. The development of novel nanomaterials has become the pinpoint for different application areas. In this review, the recent progress in the area of multicolour-emissive nanomaterials is summarized. The different emissions (white, orange, green, red, blue, and multicolour) of nanostructure materials (metal nanoclusters, quantum dots, carbon dots, and rare earth-based nanomaterials) are briefly discussed. The potential applications of different colour-emissive nanomaterials in the development of fluorescent inks, light-emitting diodes, cell imaging, and sensing devices are briefly summarized. Finally, the future perspectives of multicolour-emissive nanomaterials are discussed.
Collapse
Affiliation(s)
- Sadhu Vibhuti Atulbhai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Rakesh Kumar Singhal
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Hirakendu Basu
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
8
|
Bera N, Kiran Nandi P, Hazra R, Sarkar N. Aggregation induced emission of surface ligand controlled gold nanoclusters employing imidazolium surface active ionic liquid and pH sensitivity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Guo F, Li DF, Gao F, Xu K, Zhang J, Yi XG, Li DP, Li YX. Highly Stable Europium(III) Tetrahedral (Eu 4L 4)(phen) 4 Cage: Structure, Luminescence Properties, and Cellular Imaging. Inorg Chem 2022; 61:17089-17100. [PMID: 36240513 DOI: 10.1021/acs.inorgchem.2c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luminescent lanthanide cages have many potential applications in guest recognition, sensing, magnetic resonance imaging (MRI), and bioimaging. However, these polynuclear lanthanide assemblies' poor stability, dispersity, and luminescence properties have significantly constrained their practical applications. Furthermore, it is still a huge challenge to simultaneously synthesize and design lanthanide organic polyhedra with high stability and quantum yield. Herein, we demonstrate a simple and robust strategy to improve the rigidity, chemical stability, and luminescence of an Eu(III) tetrahedral cage by introducing the conjugated planar auxiliary phen ligand. The self-assembled tetrahedral cage, (Eu4L4)(phen)4 [L = (4,4',4″-tris(4,4,4-trifluoro-1,3-dioxobutyl)-triphenylamine), phen = 1,10-phenanthroline], exhibited characteristic luminescence of Eu3+ ions with high quantum yield (41%) and long lifetime (131 μs) in toluene (1.0 × 10-6 M). Moreover, the Eu(III) cage was stable in water and even in an aqueous solution with a pH range of 1-14. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cellular imaging revealed that the Pluronic F127-coated hybrid material, (Eu4L4)(phen)4@F127, exhibited low cytotoxicity, good biocompatibility, and cellular imaging ability, which may inspire more insights into the development of lanthanide organic polyhedra (LOPs) for potential biomedical applications.
Collapse
Affiliation(s)
- Feng Guo
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Duo-Fu Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Fang Gao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, China
| | - Jun Zhang
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei230601, China
| | - Xiu-Guang Yi
- School of Chemistry and Chemical Engineering, Jinggangshan University, Jian343009, China
| | - Dong-Ping Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Yong-Xiu Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| |
Collapse
|
11
|
Nguyen NTK, Lebastard C, Wilmet M, Dumait N, Renaud A, Cordier S, Ohashi N, Uchikoshi T, Grasset F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb 6, Mo 6, Ta 6, W 6, Re 6): inorganic 0D and 2D powders and films. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:547-578. [PMID: 36212682 PMCID: PMC9542349 DOI: 10.1080/14686996.2022.2119101] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 05/29/2023]
Abstract
This review is dedicated to various functional nanoarchitectonic nanocomposites based on molecular octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6). Powder and film nanocomposites with two-dimensional, one-dimensional and zero-dimensional morphologies are presented, as well as film matrices from organic polymers to inorganic layered oxides. The high potential and synergetic effects of these nanocomposites for biotechnology applications, photovoltaic, solar control, catalytic, photonic and sensor applications are demonstrated. This review also provides a basic level of understanding how nanocomposites are characterized and processed using different techniques and methods. The main objective of this review would be to provide guiding significance for the design of new high-performance nanocomposites based on transition metal atom clusters.
Collapse
Affiliation(s)
- Ngan T. K. Nguyen
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- International Center for Young Scientists, ICYS-Sengen, Global Networking Division, NIMS, Tsukuba, Japan
| | - Clément Lebastard
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Maxence Wilmet
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
- Saint Gobain Research Paris, Aubervilliers, France
| | - Noée Dumait
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Adèle Renaud
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | | | - Naoki Ohashi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Tetsuo Uchikoshi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Fabien Grasset
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| |
Collapse
|
12
|
Jiang XX, Li P, Zhao MY, Chen RC, Wang ZG, Xie JX, Lv YK. In situ encapsulation of SQDs by zinc ion-induced ZIF-8 growth strategy for fluorescent and colorimetric dual-signal detection of alkaline phosphatase. Anal Chim Acta 2022; 1221:340103. [DOI: 10.1016/j.aca.2022.340103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
|
13
|
Zhang W, Wu Y, Liu X, Liu Y, Zhang Y, Wang W, Mu X, Su R, Sun Y, Song D, Wang X. A universal sensing platform based on iron and nitrogen co-doped carbon dots for detecting hydrogen peroxide and related metabolites in human fluid by ratiometric fluorometry and colorimetry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121003. [PMID: 35151173 DOI: 10.1016/j.saa.2022.121003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
A universal ratiometric fluorescence and colorimetric dual-mode sensing platform for detecting hydrogen peroxide (H2O2) and related metabolites in human fluid was constructed based on iron and nitrogen co-doped carbon dots (Fe/N-CDs). As a fluorescent nanomaterial with peroxidase-like property, Fe/N-CDs emits fluorescence at 449 nm (F449) under excitation of incident ultraviolet light, and can catalyze the oxidation of o-phenylenediamine (OPD) by H2O2 for generating 2,3-diaminophenazine (oxOPD) that exhibits obvious absorption at 420 nm (A420) and fluorescence emission at 555 nm (F555). The Förster resonance energy transfer (FRET) between Fe/N-CDs and oxOPD would result in the fluorescence quenching Fe/N-CDs and the fluorescence enhancement of oxOPD, which facilitates the quantitation of oxOPD by ratiometric fluorometry. Since the amount of generated oxOPD is determined by the amount of H2O2 consumed during the oxidation reaction, the detection of H2O2 and related metabolites can be realized by monitoring both ratiometric fluorescent (F555/F449) and colorimetric (absorption, A420) signals of oxOPD. This dual-mode sensing platform exhibits excellent selectivity and sensitivity toward with H2O2, xanthine and uric acid in both human serum and urine samples, demonstrating its good potential for monitoring H2O2 and metabolites involved in H2O2 metabolism in human body. The detection limits (LODs) of H2O2, xanthine and uric acid obtained by this sensing platform were 0.07, 0.15, and 0.14 μM for ratiometric fluorescence mode, and 0.12, 0.52, and 0.47 μM for colorimetric mode, respectively. By utilizing appropriate oxidases in this universal sensing platform, the determination of other metabolites involved with producing H2O2 can also be realized facilely.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yanhua Wu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130021, China
| | - Xin Liu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yibing Liu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yue Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Wei Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xiaowei Mu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Rui Su
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Ying Sun
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| |
Collapse
|
14
|
Khan IM, Niazi S, Yue L, Zhang Y, Pasha I, Iqbal Khan MK, Akhtar W, Mohsin A, Chughati MFJ, Wang Z. Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta 2022; 241:123228. [DOI: 10.1016/j.talanta.2022.123228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
|
15
|
Chen J, Liu Z, Fang J, Wang Y, Cao Y, Xu W, Ma Y, Meng X, Wang B. A turn-on fluorescence biosensor for sensitive detection of carbaryl using flavourzyme-stabilized gold nanoclusters. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Packirisamy V, Pandurangan P. Heterocyclic thiol protected supramolecular self-assembly of silver nanoclusters for ultrasensitive detection of toxic Hg (II) ions in nanomolar range. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Bagchi D, Maity A, De SK, Chakraborty A. Effect of Metal Ions on the Intrinsic Blue Fluorescence Property and Morphology of Aromatic Amino Acid Self-Assembly. J Phys Chem B 2021; 125:12436-12445. [PMID: 34734524 DOI: 10.1021/acs.jpcb.1c07392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal ions are known to strongly bind with different proteins and peptides, resulting in alteration of their different physicochemical properties. In this work, we investigate the effect of metal ions of different nuclear charges and sizes on the intrinsic blue luminescence of the self-assembled structures formed by aromatic amino acids, namely, phenylalanine and tryptophan, using spectroscopic and imaging techniques. The study reveals that the intrinsic blue fluorescence of amino acid assemblies is influenced by metal ions and the pH of the medium. The metal ions with a higher charge to radius ratio promote clusterization which results in the enhancement of the intrinsic fluorescence, an effect known as "clusteroluminescence" of the amino acids aggregates. The imaging study reveals that metal ions with a higher charge to size ratio inhibit the large fibrillation of aromatic amino acids by promoting the formation of small nonfibrillar aggregates through increased hydrophobicity in the medium. The nanoaggregates are assumed to be responsible for the enhancement in the blue "clusteroluminescence".
Collapse
Affiliation(s)
- Debanjan Bagchi
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Soumya Kanti De
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
18
|
Cao X, Han Q, Wang Q, Gao A, Ge XF, Yu X, Wang G. Fluorescent naphthalimide-based supramolecular gel system for detection phosgene, sulfoxide chloride and oxalyl dichloride. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Wang H, Zhou T, Li W, Wang Z, Liu Y, Wang F, Wang X, Zhang G, Zhang Z. Homocytosine-templated gold nanoclusters as a label-free fluorescent probe: Ferrous ions and glucose detection based on Fenton and enzyme-Fenton reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Li L, Zhao W, Zhang J, Luo L, Liu X, Li X, You T, Zhao C. Label-free Hg(II) electrochemiluminescence sensor based on silica nanoparticles doped with a self-enhanced Ru(bpy) 32+-carbon nitride quantum dot luminophore. J Colloid Interface Sci 2021; 608:1151-1161. [PMID: 34735851 DOI: 10.1016/j.jcis.2021.10.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 01/05/2023]
Abstract
Herein, a label-free, self-enhanced electrochemiluminescence (ECL) sensing strategy for divalent mercury (Hg(II)) detection was presented. First, a novel self-enhanced ECL luminophore was prepared by combining the ECL reagent tris(2, 2'-bipyridyl) dichlororuthenium(II) hexahydrate (Ru(bpy)32+) and its co-reactant carbon nitride quantum dots (CNQDs) via electrostatic interactions. In contrast to traditional ECL systems where the emitter and its co-reactant underwent an intermolecular reaction, the self-enhanced ECL system exhibited a shortened electron-transfer distance and enhanced luminous efficiency because the electrons transferred from CNQDs to oxidized Ru(bpy)32+ via an intramolecular pathway. Furthermore, the as-prepared self-enhanced ECL material was encapsulated in silica (SiO2) nanoparticles to generate a Ru-QDs@SiO2 luminophore. Based on the different affinity of Ru-QDs@SiO2 nanoparticles for single-stranded DNA (ssDNA) and Hg(II)-triggered double-stranded DNA (dsDNA), a label-free ECL biosensor for Hg(II) detection was developed as follows: in the absence of Hg(II), ssDNA was adsorbed on Ru-QDs@SiO2 surface via hydrogen bond, electrostatic, and hydrophobic interaction. Thus, quenched ECL signal was observed. On the contrary, in the presence of Hg(II), stable dsDNA was formed and carried the ssDNA separating from Ru-QDs@SiO2 surface, resulting in most of Ru-QDs@SiO2 existing in their free state. Therefore, a recovered ECL intensity was obtained. On this basis, Hg(II) was measured by the proposed method in the range of 0.1 nM-10 μM, with a detection limit of 33 pM. Finally, Hg(II) spiked in water samples was measured to evaluate the practicality of the fabricated biosensor.
Collapse
Affiliation(s)
- Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wanlin Zhao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiayi Zhang
- Qingdao Hengxing University of Science and Technology, Qingdao, Shandong 266100, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chunjiang Zhao
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China.
| |
Collapse
|
21
|
Qin Z, Su W, Liu P, Ma J, Zhang Y, Jiao T. Facile Preparation of a Rhodamine B Derivative-Based Fluorescent Probe for Visual Detection of Iron Ions. ACS OMEGA 2021; 6:25040-25048. [PMID: 34604683 PMCID: PMC8482772 DOI: 10.1021/acsomega.1c04206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 05/17/2023]
Abstract
Iron ions play an important role in our lives. Excessive or lack of iron ion intake leads to many diseases. At the same time, the water environment is easily polluted by these metal ions with the acceleration of industrialization. Therefore, the detection of iron ions in the water environment and the human body is particularly important. In this paper, we prepared a RhB-EDA fluorescent probe by condensing rhodamine B (RhB) with ethylenediamine (EDA) for high recognition of Fe3+. A RhB-EDA molecule itself is colorless and has no fluorescence emission in an alcohol solution. When Fe3+ was added, the lactam ring structure of the fluorescent probe opened, and the UV and fluorescence spectra changed. At the same time, the color of the mixed solution gradually deepened toward pink. Therefore, dual spectral detection and naked-eye observation of Fe3+ were realized. In addition, with the decrease of the pH value and the prolongation of chelating time, the ultraviolet absorbance and fluorescence emission intensity were enhanced and the color of the mixed solution deepened. The RhD-EDA fluorescent probe is simple and accurate and provides good technical support for the detection of Fe3+.
Collapse
Affiliation(s)
- Zhihui Qin
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Weiwei Su
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Ping Liu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Jinming Ma
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Yaru Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| |
Collapse
|
22
|
Wang D, Li C, Zhu Y, Song Y, Lu S, Sun H, Hao H, Xu X. TEPP-46-Based AIE Fluorescent Probe for Detection and Bioimaging of PKM2 in Living Cells. Anal Chem 2021; 93:12682-12689. [PMID: 34505513 DOI: 10.1021/acs.analchem.1c02529] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pyruvate kinase (PK) M2 (PKM2), a glycolytic enzyme, is a hallmark of different types of tumors and plays a significant role in the Warburg effect. However, there is no fluorescent probe for PKM2 that has been reported yet. In this study, TEPC466, a novel TEPP-46-based aggregation-induced emission (AIE) probe for the detection of PKM2, was designed, synthesized, and fully characterized by 1H NMR, 13C NMR, and high-resolution mass spectrometry. When the fluorescent agent, coumarine, was conjugated to TEPP-46, the bioprobe TEPC466 showed a high degree of selectivity and sensitivity for the detection of PKM2 protein via the AIE effect. TEPC466 was then successfully applied in imaging the PKM2 protein in colorectal cancer cells with low toxicity. Moreover, structure-based modeling and the PK activity assay confirmed that TEPC466 has a better binding with PKM2 than TEPP-46, which suggests that TEPC466 could also be a good agonist of PKM2. Taken together, the bioprobe shows potential in selective detection of PKM2 and provides a useful tool for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Chunmeng Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Ya Zhu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Yunxia Song
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211816 Nanjing, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| |
Collapse
|
23
|
Zhang J, Chen R, Chen Q, Hu Y, Pan S, Hu X. Ratiometric fluorescent probe for ascorbic acid detection based on MnO2 nanosheets, gold nanoclusters and thiamine. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|