1
|
Tu W, Farndon JJ, Robertson CM, Bower JF. An Aza-Prilezhaev-Based Method for Inversion of Regioselectivity in Stereospecific Alkene 1,2-Aminohydroxylations. Angew Chem Int Ed Engl 2024:e202409836. [PMID: 39171407 DOI: 10.1002/anie.202409836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Under acidic conditions (TFA) and in the presence of water, BocNHOTs promotes stereospecific 1,2-aminohydroxylations of alkenes. The processes involve intermolecular aza-Prilezhaev aziridination followed by stereospecific SN2 opening by water. This reagent combination provides regiochemical outcomes that are opposite to, or more selective than those observed using epoxidation initiated 1,2-aminohydroxylation protocols. Replacement of water by other nucleophiles allows 1,2-amino(thio)etherification, diamination, aminoazidation and aminofluorination reactions. Intramolecular processes are also feasible, including unusual variants that evoke azabicyclobutane-like reactivity.
Collapse
Affiliation(s)
- Wenbin Tu
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom, BS8 1TS
| | - Joshua J Farndon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom, BS8 1TS
| | - Craig M Robertson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
| |
Collapse
|
2
|
Wearing ER, Yeh YC, Terrones GG, Parikh SG, Kevlishvili I, Kulik HJ, Schindler CS. Visible light-mediated aza Paternò-Büchi reaction of acyclic oximes and alkenes to azetidines. Science 2024; 384:1468-1476. [PMID: 38935726 DOI: 10.1126/science.adj6771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
The aza Paternò-Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò-Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light-mediated aza Paternò-Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis of epi-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔGǂ) values and ultimately promotes reactivity.
Collapse
Affiliation(s)
- Emily R Wearing
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seren G Parikh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Corinna S Schindler
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1 BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z4 BC, Canada
- BC Cancer, Vancouver V5Z 1G1 BC, Canada
| |
Collapse
|
3
|
Yan J, Dong L, Yang Y, Zhang D. DFT Insight into a Strain-Release Mechanism in Bicyclo[1.1.0]butanes via Concerted Activation of Central and Lateral C-C Bonds with Rh(III) Catalysis. Inorg Chem 2024; 63:8879-8888. [PMID: 38676642 DOI: 10.1021/acs.inorgchem.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Transition-metal-catalyzed, strain-release-driven transformations of "spring-loaded" bicyclo[1.1.0]butanes (BCBs) are considered potent tools in synthetic organic chemistry. Previously proposed strain-release mechanisms involve either the insertion of the central C-C bond of BCBs into a metal-carbon bond, followed by β-C elimination, or the oxidative addition of the central or lateral C-C bond on the transition metal center, followed by reductive elimination. This study, employing DFT calculations on a Rh(III)-catalyzed model system in a three-component protocol involving oxime ether, BCB ester, and ethyl glyoxylate for constructing diastereoselective quaternary carbon centers, introduces an unusual strain-release mechanism for BCBs. In this mechanism, the catalytic reaction is initiated by the simultaneous cleavage of two C-C bonds (the central and lateral C-C bonds), resulting in the formation of a Rh-carbene intermediate. The new mechanism exhibits a barrier of 21.0 kcal/mol, making it energetically more favorable by 11.1 kcal/mol compared to the previously suggested most favorable pathway. This unusual reaction mode rationalizes experimental observation of the construction of quaternary carbon centers, including the excellent E-selectivity and diastereoselectivity. The newly proposed strain-release mechanism holds promise in advancing our understanding of transition-metal-catalyzed C-C bond activation mechanisms and facilitating the synthesis of transition metal carbene complexes.
Collapse
Affiliation(s)
- Jing Yan
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, Shandong, China
| | - Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, Shandong, China
| | - Yiying Yang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
4
|
Hsu CM, Lin HB, Hou XZ, Tapales RVPP, Shih CK, Miñoza S, Tsai YS, Tsai ZN, Chan CL, Liao HH. Azetidines with All-Carbon Quaternary Centers: Merging Relay Catalysis with Strain Release Functionalization. J Am Chem Soc 2023; 145:19049-19059. [PMID: 37589099 DOI: 10.1021/jacs.3c06710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Given the importance and beneficial characteristics of decorated azetidines in medicinal chemistry, efficient strategies for their synthesis are highly sought after. Herein, we report a facile synthesis of the elusive all-carbon quaternary-center-bearing azetidines. By adopting a well-orchestrated polar-radical relay strategy, ring strain release of bench-stable benzoylated 1-azabicyclo[1.1.0]butane (ABB) can be harnessed for nickel-catalyzed Suzuki Csp2-Csp3 cross-coupling with commercially available boronic acids in broad scope (>50 examples), excellent functional group tolerance, and gram-scale utility. Preliminary mechanistic studies provided insights into the underlying mechanism, wherein the ring opening of ABB with a catalytic quantity of bromide accounts for the conversion of ABB into a redox-active azetidine, which subsequently engages in the cross-coupling reaction through a radical pathway. The synergistic bromide and nickel catalysis could intriguingly be derived from a single nickel source (NiBr2). Application of the method to modify natural products, biologically relevant molecules, and pharmaceuticals has been successfully achieved as well as the synthesis of melanocortin-1 receptor (MC-1R) agonist and vesicular acetylcholine transporter (VAChT) inhibitor analogues through bioisosteric replacements of piperidine with azetidine moieties, highlighting the potential of the method in drug optimization studies. Aside from the synthesis of azetidines, we demonstrate the ancillary utility of our nickel catalytic system toward the restricted Suzuki cross-coupling of tertiary alkyl bromides with aryl boronic acids to construct all-carbon quaternary centers.
Collapse
Affiliation(s)
- Che-Ming Hsu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Heng-Bo Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Xin-Zhi Hou
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | | | - Chen-Kuei Shih
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Shinje Miñoza
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Yu-Syuan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Zong-Nan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Cheng-Lin Chan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
- Green Hydrogen Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| |
Collapse
|
5
|
Shen HC, Popescu MV, Wang ZS, de Lescure L, Noble A, Paton RS, Aggarwal VK. Iridium-Catalyzed Asymmetric Difunctionalization of C-C σ-Bonds Enabled by Ring-Strained Boronate Complexes. J Am Chem Soc 2023. [PMID: 37471704 PMCID: PMC10401714 DOI: 10.1021/jacs.3c03248] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Enantioenriched organoboron intermediates are important building blocks in organic synthesis and drug discovery. Recently, transition metal-catalyzed enantioselective 1,2-metalate rearrangements of alkenylboronates have emerged as an attractive protocol to access these valuable reagents by installing two different carbon fragments across C═C π-bonds. Herein, we report the development of an iridium-catalyzed asymmetric allylation-induced 1,2-metalate rearrangement of bicyclo[1.1.0]butyl (BCB) boronate complexes enabled by strain release, which allows asymmetric difunctionalization of C-C σ-bonds, including dicarbonation and carboboration. This protocol provides a variety of enantioenriched three-dimensional 1,1,3-trisubstituted cyclobutane products bearing a boronic ester that can be readily derivatized. Notably, the reaction gives trans diastereoisomers that result from an anti-addition across the C-C σ-bond, which is in contrast to the syn-additions observed for reactions promoted by PdII-aryl complexes and other electrophiles in our previous works. The diastereoselectivity has been rationalized based on a combination of experimental data and density functional theory calculations, which suggest that the BCB boronate complexes are highly nucleophilic and react via early transition states with low activation barriers.
Collapse
Affiliation(s)
- Hong-Cheng Shen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Mihai V Popescu
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Ze-Shu Wang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Louis de Lescure
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
6
|
Tyler JL, Aggarwal VK. Synthesis and Applications of Bicyclo[1.1.0]butyl and Azabicyclo[1.1.0]butyl Organometallics. Chemistry 2023; 29:e202300008. [PMID: 36786481 PMCID: PMC10947034 DOI: 10.1002/chem.202300008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023]
Abstract
The use of metalated (aza)bicyclo[1.1.0]butanes in synthesis is currently experiencing a renaissance, as evidenced by the numerous reports in the last 5 years that have relied on such intermediates to undergo unique transformations or generate novel fragments. Since their discovery, these species have been demonstrated to participate in a wide range of reactions with carbon and heteroatom electrophiles, as well as metal complexes, to facilitate the rapid diversification of (aza)bicyclo[1.1.0]butane-containing compounds. Key to this is the relative acidity of the bridgehead C-H bonds which promotes facile deprotonation and subsequent functionalization of an unsubstituted position on the carbon framework via the intermediacy of a metalated (aza)bicyclo[1.1.0]butane. Additionally, the late-stage incorporation of deuterium atoms in strained fragments has led to the elucidation of numerous reaction mechanisms that involve strained bicycles. The continued investigation into the inimitable reactivity of metalated bicycles will cement their importance within the field of organometallic chemistry.
Collapse
Affiliation(s)
- Jasper L. Tyler
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
7
|
Li M, Chong Q, Meng F. Cobalt-Catalyzed Atom-economical and Regioselective Hydroalkylation of N-Boc-2-azetine with Cobalt Homoenolates. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Tyler JL, Noble A, Aggarwal VK. Four-Component Strain-Release-Driven Synthesis of Functionalized Azetidines. Angew Chem Int Ed Engl 2022; 61:e202214049. [PMID: 36300572 PMCID: PMC10099845 DOI: 10.1002/anie.202214049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Despite the favorable properties that azetidine rings can engender on drug-compounds, methods for the diversity-oriented synthesis of azetidine-based structures are significantly underdeveloped. Herein, we report the successful realization of a multicomponent [1,2]-Brook rearrangement/strain-release-driven anion relay sequence and its application to the modular synthesis of substituted azetidines. The rapidity of the reaction, as confirmed by in situ infra-red spectroscopy, leverages the strain-release ring-opening of azabicyclo[1.1.0]butane to drive the equilibrium of the Brook rearrangement. The three electrophilic coupling partners, added sequentially to azabicyclo[1.1.0]butyl-lithium, could be individually varied to access a diverse compound library. The utility of this methodology was demonstrated in a 4-step synthesis of the EP2 receptor antagonist PF-04418948.
Collapse
Affiliation(s)
- Jasper L Tyler
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
9
|
Chen PP, Wipf P, Houk KN. How mono- and diphosphine ligands alter regioselectivity of the Rh-catalyzed annulative cleavage of bicyclo[1.1.0]butanes. Nat Commun 2022; 13:7292. [DOI: 10.1038/s41467-022-34837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractRh(I)-catalyzed cycloisomerizations of bicyclo[1.1.0]butanes provide a fruitful approach to cyclopropane-fused heterocycles. Products and stereochemical outcome are highly dependent on catalyst. The triphenylphosphine (PPh3) ligand provides pyrrolidines, placing substituents anti to the cyclopropyl group. The 1,2-bis(diphenylphosphino)ethane (dppe) ligand yields azepanes with substituents syn to the cyclopropyl group. In this work, quantum mechanical DFT calculations pinpoint a reversal of regio- and diastereoselectivity, suggesting a concerted (double) C−C bond cleavage and rhodium carbenoid formation, driven by strain-release. The ligand-influenced cleavage step determines the regioselectivity of carbometalation and product formation, and suggests new applications of bicyclobutanes.
Collapse
|
10
|
Musci P, Colella M, Andresini M, Aramini A, Degennaro L, Luisi R. Flow technology enabled preparation of C3-heterosubstituted 1-azabicyclo[1.1.0]butanes and azetidines: accessing unexplored chemical space in strained heterocyclic chemistry. Chem Commun (Camb) 2022; 58:6356-6359. [PMID: 35536561 DOI: 10.1039/d2cc01641a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of flow technology as an enabling tool for accessing 1-azabicyclo[1.1.0]butanes bearing strained 3-, 4-, and 5-membered O-heterocycles with C3(N-het)-C2(O-het) connectivity is reported. Reactivity and chemoselectivity (N-ring vs. O-ring) were also evaluated. New chemical space has been explored and new structural motifs such as ABB-aziridines or spiro azetidine-oxazetidines are also reported.
Collapse
Affiliation(s)
- Pantaleo Musci
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| | - Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| | - Michael Andresini
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila, 67100, Italy
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
11
|
Musci P, Colella M, Altomare A, Romanazzi G, Sheikh NS, Degennaro L, Luisi R. Dynamic Phenomena and Complexation Effects in the α-Lithiation and Asymmetric Functionalization of Azetidines. Molecules 2022; 27:2847. [PMID: 35566200 PMCID: PMC9103493 DOI: 10.3390/molecules27092847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
In this work it is demonstrated that enantiomerically enriched N-alkyl 2-oxazolinylazetidines undergo exclusive α-lithiation, and that the resulting lithiated intermediate is chemically stable but configurationally labile under the given experimental conditions that afford enantioenriched N-alkyl-2,2-disubstituted azetidines. Although this study reveals the configurational instability of the diastereomeric lithiated azetidines, it points out an interesting stereoconvergence of such lithiated intermediates towards the thermodynamically stable species, making the overall process highly stereoselective (er > 95:5, dr > 85:15) after trapping with electrophiles. This peculiar behavior has been rationalized by considering the dynamics at the azetidine nitrogen atom, the inversion at the C-Li center supported by in situ FT-IR experiments, and DFT calculations that suggested the presence of η3-coordinated species for diastereomeric lithiated azetidines. The described situation contrasted with the demonstrated stability of the smaller lithiated aziridine analogue. The capability of oxazolinylazetidines to undergo different reaction patterns with organolithium bases supports the model termed “dynamic control of reactivity” of relevance in organolithium chemistry. It has been demonstrated that only 2,2-substituted oxazolinylazetidines with suitable stereochemical requirements could undergo C=N addition of organolithiums in non-coordinating solvents, leading to useful precursors of chiral (er > 95:5) ketoazetidines.
Collapse
Affiliation(s)
- Pantaleo Musci
- Department of Pharmacy—Drug Sciences, University of Bari “A. Moro”, Via E. Orabona 4, 70125 Bari, Italy; (P.M.); (M.C.)
| | - Marco Colella
- Department of Pharmacy—Drug Sciences, University of Bari “A. Moro”, Via E. Orabona 4, 70125 Bari, Italy; (P.M.); (M.C.)
| | - Angela Altomare
- National Research Council (CNR), Institute of Christallography IC-CNR, Via Amendola 127/A, 70125 Bari, Italy;
| | - Giuseppe Romanazzi
- DICATECh—Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Nadeem S. Sheikh
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Leonardo Degennaro
- Department of Pharmacy—Drug Sciences, University of Bari “A. Moro”, Via E. Orabona 4, 70125 Bari, Italy; (P.M.); (M.C.)
| | - Renzo Luisi
- Department of Pharmacy—Drug Sciences, University of Bari “A. Moro”, Via E. Orabona 4, 70125 Bari, Italy; (P.M.); (M.C.)
| |
Collapse
|
12
|
Tyler JL, Noble A, Aggarwal VK. Strain‐Release‐Driven Friedel–Crafts Spirocyclization of Azabicyclo[1.1.0]butanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jasper L. Tyler
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
13
|
Tyler JL, Noble A, Aggarwal VK. Strain-Release-Driven Friedel-Crafts Spirocyclization of Azabicyclo[1.1.0]butanes. Angew Chem Int Ed Engl 2022; 61:e202114235. [PMID: 34780681 PMCID: PMC9299780 DOI: 10.1002/anie.202114235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 02/06/2023]
Abstract
The identification of spiro N-heterocycles as scaffolds that display structural novelty, three-dimensionality, beneficial physicochemical properties, and enable the controlled spatial disposition of substituents has led to a surge of interest in utilizing these compounds in drug discovery programs. Herein, we report the strain-release-driven Friedel-Crafts spirocyclization of azabicyclo[1.1.0]butane-tethered (hetero)aryls for the synthesis of a unique library of azetidine spiro-tetralins. The reaction was discovered to proceed through an unexpected interrupted Friedel-Crafts mechanism, generating a highly complex azabicyclo[2.1.1]hexane scaffold. This dearomatized intermediate, formed exclusively as a single diastereomer, can be subsequently converted to the Friedel-Crafts product upon electrophilic activation of the tertiary amine, or trapped as a Diels-Alder adduct in one-pot. The rapid assembly of molecular complexity demonstrated in these reactions highlights the potential of the strain-release-driven spirocyclization strategy to be utilized in the synthesis of medicinally relevant scaffolds.
Collapse
Affiliation(s)
- Jasper L. Tyler
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
14
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Colella M, Musci P, Cannillo D, Spennacchio M, Aramini A, Degennaro L, Luisi R. Development of a Continuous Flow Synthesis of 2-Substituted Azetines and 3-Substituted Azetidines by Using a Common Synthetic Precursor. J Org Chem 2021; 86:13943-13954. [PMID: 34291947 DOI: 10.1021/acs.joc.1c01297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The generation and functionalization, under continuous flow conditions, of two different lithiated four-membered aza-heterocycles is reported. N-Boc-3-iodoazetidine acts as a common synthetic platform for the genesis of C3-lithiated azetidine and C2-lithiated azetine depending on the lithiation agent. Flow technology enables easy handling of such lithiated intermediates at much higher temperatures compared to batch processing. Flow technology combined with cyclopentylmethyl ether as an environmentally responsible solvent allows us to address sustainability concerns.
Collapse
Affiliation(s)
- Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Pantaleo Musci
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Debora Cannillo
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Mauro Spennacchio
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila 67100, Italy
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
16
|
Parmar DR, Soni JY, Guduru R, Rayani RH, Kusurkar RV, Vala AG. Azetidines of pharmacological interest. Arch Pharm (Weinheim) 2021; 354:e2100062. [PMID: 34184778 DOI: 10.1002/ardp.202100062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
Azetidines are almost unexplored among nitrogen-containing saturated heterocycles due to difficulties associated with their synthesis. However, over the past few years, attempts have been made by scientists to advance their synthetic feasibility. Compounds with the azetidine moiety display an important and diverse range of pharmacological activities, such as anticancer, antibacterial, antimicrobial, antischizophrenic, antimalarial, antiobesity, anti-inflammatory, antidiabetic, antiviral, antioxidant, analgesic, and dopamine antagonist activities, and are also useful for the treatment of central nervous system disorders and so forth. Owing to its satisfactory stability, molecular rigidity, and chemical and biological properties, azetidine has emerged as a valuable scaffold and it has drawn the attention of medicinal researchers. The present review sheds light on the traditional method of synthesis of azetidine and advancements in synthetic methodology over the past few years, along with its application with various examples, and its biological significance.
Collapse
Affiliation(s)
- Deepa R Parmar
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| | - Jigar Y Soni
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India
| | | | - Rahul H Rayani
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| | - Rakesh V Kusurkar
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| | - Anand G Vala
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| |
Collapse
|
17
|
Rágyanszki A, Fiser B, Lee-Ruff E, Liebman JF. Photochemical Valence Isomerization to High Energy Products-Bicyclobutanes and Oxabicyclobutanes †. Photochem Photobiol 2021; 97:1353-1364. [PMID: 34145589 DOI: 10.1111/php.13472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
DFT calculations were used to determine the structures and energies of bicyclobutane and oxabicyclobutane as valence isomers derived from electronic excitation of their corresponding precursors, 1,3-butadiene and acrolein, respectively. Proton affinities of these strained compounds were determined and compared with their simple ring components, cyclopropane and ethylene oxide. The basicity as determined from proton affinities showed that bicyclobutane is the most basic saturated hydrocarbon, even more basic than oxabicyclobutane. Strain energies of these valence tautomers were computed which showed oxabicyclobutane to be significantly more strained than bicyclobutane. Qualitative reasons are provided to account for the difference in strain energies.
Collapse
Affiliation(s)
- Anita Rágyanszki
- Department of Physics and Astronomy, York University, Toronto, ON, Canada
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Hungary.,Ferenc Rákóczi II. Transcarpathian Hungarian Institute, Beregszász, Transcarpathia, Ukraine
| | - Edward Lee-Ruff
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Joel F Liebman
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA
| |
Collapse
|
18
|
Pinkert T, Das M, Schrader ML, Glorius F. Use of Strain-Release for the Diastereoselective Construction of Quaternary Carbon Centers. J Am Chem Soc 2021; 143:7648-7654. [PMID: 33974436 DOI: 10.1021/jacs.1c03492] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we describe the formation of quaternary carbon centers with excellent diastereoselectivity via a strain-release protocol. An organometallic species is generated by Cp*Rh(III)-catalyzed C-H activation, which is then coupled with strained bicyclobutanes (BCBs) and a prochiral carbon electrophile in a three-component reaction. This work illustrates a rare example of BCBs in transition metal catalysis and demonstrates their broad potential to access novel reaction pathways. The method developed exhibits ample functional group tolerance, and the products can be further transformed into valuable α-quaternary β-lactones. Preliminary mechanistic investigations suggest a twofold C-C bond cleavage sequence involving σ-bond insertion and an ensuing β-carbon elimination event.
Collapse
Affiliation(s)
- Tobias Pinkert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Mowpriya Das
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Malte L Schrader
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
19
|
Tyler JL, Noble A, Aggarwal VK. Strain-Release Driven Spirocyclization of Azabicyclo[1.1.0]butyl Ketones. Angew Chem Int Ed Engl 2021; 60:11824-11829. [PMID: 33754432 PMCID: PMC8251566 DOI: 10.1002/anie.202102754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Due to their intrinsic rigidity, three-dimensionality and structural novelty, spirocyclic molecules have become increasingly sought-after moieties in drug discovery. Herein, we report a strain-release driven synthesis of azetidine-containing spirocycles by harnessing the inherent ring strain of the azabicyclo[1.1.0]butane (ABB) fragment. Novel ABB-ketone precursors bearing silyl-protected alcohols were synthesized in a single step and shown to engage in electrophile-induced spirocyclization-desilylation reactions. Primary, secondary and tertiary silyl ethers were effectively transformed into a library of new spiro-azetidines, with a range of substituents and ring sizes. In addition, the products are generated with synthetically useful ketone and protected-amine functional groups, which provides the potential for further elaboration and for this chemistry to be utilized in the rapid assembly of medicinally relevant compounds.
Collapse
Affiliation(s)
- Jasper L. Tyler
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
20
|
Mendes JA, Costa PRR, Yus M, Foubelo F, Buarque CD. N- tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles. Beilstein J Org Chem 2021; 17:1096-1140. [PMID: 34093879 PMCID: PMC8144919 DOI: 10.3762/bjoc.17.86] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
The synthesis of nitrogen-containing heterocycles, including natural alkaloids and other compounds presenting different types of biological activities have proved to be successful employing chiral sulfinyl imines derived from tert-butanesulfinamide. These imines are versatile chiral auxiliaries and have been extensively used as eletrophiles in a wide range of reactions. The electron-withdrawing sulfinyl group facilitates the nucleophilic addition of organometallic compounds to the iminic carbon with high diastereoisomeric excess and the free amines obtained after an easy removal of the tert-butanesulfinyl group can be transformed into enantioenriched nitrogen-containing heterocycles. The goal of this review is to the highlight enantioselective syntheses of heterocycles involving the use of chiral N-tert-butanesulfinyl imines as reaction intermediates, including the synthesis of several natural products. The synthesis of nitrogen-containing heterocycles in which the nitrogen atom is not provided by the chiral imine will not be considered in this review. The sections are organized according to the size of the heterocycles. The present work will comprehensively cover the most pertinent contributions to this research area from 2012 to 2020. We regret in advance that some contributions are excluded in order to maintain a concise format.
Collapse
Affiliation(s)
- Joseane A Mendes
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Puc-Rio, CEP 22435-900, Brazil
| | - Paulo R R Costa
- Laboratory of Bioorganic Chemistry, Institute of Research of Natural Products, Health Science Center, Federal University of Rio de Janeiro UFRJ, CEP 21941-590, Brazil
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo.99, 03080 Alicante, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99,03080 Alicante, Spain
- Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Francisco Foubelo
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo.99, 03080 Alicante, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99,03080 Alicante, Spain
- Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Camilla D Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Puc-Rio, CEP 22435-900, Brazil
| |
Collapse
|
21
|
Mughal H, Szostak M. Recent advances in the synthesis and reactivity of azetidines: strain-driven character of the four-membered heterocycle. Org Biomol Chem 2021; 19:3274-3286. [PMID: 33899862 DOI: 10.1039/d1ob00061f] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Azetidines represent one of the most important four-membered heterocycles used in organic synthesis and medicinal chemistry. The reactivity of azetidines is driven by a considerable ring strain, while at the same the ring is significantly more stable than that of related aziridines, which translates into both facile handling and unique reactivity that can be triggered under appropriate reaction conditions. Recently, remarkable advances in the chemistry and reactivity of azetidines have been reported. In this review, we provide an overview of the synthesis, reactivity and application of azetidines that have been published in the last years with a focus on the most recent advances, trends and future directions. The review is organized by the methods of synthesis of azetidines and the reaction type used for functionalization of azetidines. Finally, recent examples of using azetidines as motifs in drug discovery, polymerization and chiral templates are discussed.
Collapse
Affiliation(s)
- Haseeb Mughal
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
22
|
Tyler JL, Noble A, Aggarwal VK. Strain‐Release Driven Spirocyclization of Azabicyclo[1.1.0]butyl Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jasper L. Tyler
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
23
|
Gregson CHU, Noble A, Aggarwal VK. Divergent, Strain-Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angew Chem Int Ed Engl 2021; 60:7360-7365. [PMID: 33555105 PMCID: PMC8247891 DOI: 10.1002/anie.202100583] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/17/2022]
Abstract
The azetidine moiety is a privileged motif in medicinal chemistry and new methods that access them efficiently are highly sought after. Towards this goal, we have found that azabicyclo[1.1.0]butyl carbinols, readily obtained from the highly strained azabicyclo[1.1.0]butane (ABB), can undergo divergent strain-release reactions upon N-activation. Treatment with trifluoroacetic anhydride or triflic anhydride triggered a semipinacol rearrangement to give keto 1,3,3-substituted azetidines. More than 20 examples were explored, enabling us to evaluate selectivity and the migratory aptitude of different groups. Alternatively, treatment of the same alcohols with benzyl chloroformate in the presence of NaI led to iodohydrin intermediates which gave spiroepoxy azetidines upon treatment with base. The electronic nature of the activating agent dictates which pathway operates.
Collapse
Affiliation(s)
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
24
|
Musci P, von Keutz T, Belaj F, Degennaro L, Cantillo D, Kappe CO, Luisi R. Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C 3 ) Functionalization of Highly Strained 1-Azabicyclo[1.1.0]butanes. Angew Chem Int Ed Engl 2021; 60:6395-6399. [PMID: 33325599 DOI: 10.1002/anie.202014881] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Indexed: 12/25/2022]
Abstract
Strained compounds are privileged moieties in modern synthesis. In this context, 1-azabicyclo[1.1.0]butanes are appealing structural motifs that can be employed as click reagents or precursors to azetidines. We herein report the first telescoped continuous flow protocol for the generation, lithiation, and electrophilic trapping of 1-azabicyclo[1.1.0]butanes. The flow method allows for exquisite control of the reaction parameters, and the process operates at higher temperatures and safer conditions with respect to batch mode. The efficiency of this intramolecular cyclization/C3-lithiation/electrophilic quenching flow sequence is documented with more than 20 examples.
Collapse
Affiliation(s)
- Pantaleo Musci
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Timo von Keutz
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Leonardo Degennaro
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - David Cantillo
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Renzo Luisi
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
25
|
Gregson CHU, Noble A, Aggarwal VK. Divergent, Strain‐Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
26
|
Musci P, Keutz T, Belaj F, Degennaro L, Cantillo D, Kappe CO, Luisi R. Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C
3
) Functionalization of Highly Strained 1‐Azabicyclo[1.1.0]butanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pantaleo Musci
- Flow Chemistry and Microreactor Technology FLAME-Lab Department of Pharmacy—Drug Sciences University of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Timo Keutz
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - Ferdinand Belaj
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Leonardo Degennaro
- Flow Chemistry and Microreactor Technology FLAME-Lab Department of Pharmacy—Drug Sciences University of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - David Cantillo
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - Renzo Luisi
- Flow Chemistry and Microreactor Technology FLAME-Lab Department of Pharmacy—Drug Sciences University of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|