1
|
Sakla AP, Aaghaz S, Ahmed S, Neshat N, Kamal A. Recent Advancements in the Cyclization Strategies of 1,3-Enynes Towards the Synthesis of Heterocyclic/Carbocyclic Frameworks. Chem Asian J 2025; 20:e202401657. [PMID: 39976556 PMCID: PMC12005587 DOI: 10.1002/asia.202401657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
1,3-Enynes have demonstrated their utility as valuable precursors to furnish a diverse range of heterocycles and carbocycles. Their unique structural characteristics enable a new toolbox to introduce requisite complexity in the molecular framework. Cyclization reaction is usually a simple and straightforward way to afford complex organic frameworks. Herein, we collated versatile cyclization strategies that have been developed by employing 1,3-enynes for the synthesis of heterocyclic and carbocyclic scaffolds. Divergent synthesis and mechanistic perspectives to define stereo-, regio- and chemo-selective outcomes of such reactions have also been highlighted.
Collapse
Affiliation(s)
- Akash P. Sakla
- National Institute of Pharmaceutical Education and Research (NIPER)Hyderabad500037India
| | - Shams Aaghaz
- National Institute of Pharmaceutical Education and Research (NIPER)Hyderabad500037India
| | - Shujauddin Ahmed
- GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra Pradesh530045India
| | - Naziya Neshat
- School of Pharmaceutical Education and Research (SPER)Jamia HamdardNew Delhi110062India
| | - Ahmed Kamal
- Birla Institute of Technology & Science (BITS)Pilani Hyderabad CampusHyderabadTelangana500078India
| |
Collapse
|
2
|
Fan J, Liang X, Yao L, Wang Y, Wang K, Yao B, Liu Y, Xu S. Synthesis of tetrasubstituted furans through a Cu/base-mediated cascade reaction from terminal alkynes and 1,2-diketones. Org Biomol Chem 2025; 23:1084-1088. [PMID: 39688561 DOI: 10.1039/d4ob01785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The expeditious construction of tetrasubstituted furans via Cu/base-promoted cascade reactions of terminal alkynes with 1,2-diketones is described. This reaction proceeds smoothly, involving the formation of multiple chemical bonds tolerating a wide range of functional groups. The mechanism underlying these transformations has been thoroughly investigated, suggesting that 1,3-diyne serves as a key intermediate generated in situ through oxidative coupling facilitated by the Cu catalyst.
Collapse
Affiliation(s)
- Jian Fan
- Anhui Academy of Science and Technology, HeFei 230088, China.
- Anhui Product Quality Supervision & Inspection Research Institute, China
| | - Xuecheng Liang
- Anhui Academy of Science and Technology, HeFei 230088, China.
| | - Liangliang Yao
- School of Materials and Chemical Engineering, ChuZhou University, ChuZhou 239000, China
| | - Yating Wang
- Anhui Academy of Science and Technology, HeFei 230088, China.
| | - Kai Wang
- Anhui Academy of Science and Technology, HeFei 230088, China.
| | - Bangben Yao
- Anhui Product Quality Supervision & Inspection Research Institute, China
| | - Yujun Liu
- Anhui Academy of Science and Technology, HeFei 230088, China.
| | - Shuwen Xu
- Anhui Academy of Science and Technology, HeFei 230088, China.
| |
Collapse
|
3
|
Suri Babu U, Naveen Kumar M, Mahesh S, Nanubolu JB, Sridhar Reddy M. Pd-catalyzed ortho-/ meta-C-H-annulation of biphenyl amines with enynes through non-rollover cyclometallation. Org Biomol Chem 2025; 23:292-296. [PMID: 39552200 DOI: 10.1039/d4ob01689k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Annulations through dual C-H activation represent a powerful tool to selectively assemble multi-cyclic scaffolds. We present herein a palladium-catalyzed ortho-/meta-C-H-annulation of biphenyl amines with 1,6-enynes. This regioselective non-rollover cyclometallation was achieved through meticulous tuning of electronic factors of both the partners. This method is applicable to a wide range of protected o-arylanilines and enynes, and results in the regioselective preparation of benzo[f]isoindolyl derivatives in high yields with good diastereoselectivity (with respect to two types of stereogenic elements). Certain essential control experiments and kinetic isotope effect (KIE) studies were undertaken to elucidate the reaction mechanism, while subsequent transformations and a scale-up reaction were performed to substantiate the sturdiness of the transformation.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Muniganti Naveen Kumar
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Shivunapuram Mahesh
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
4
|
Xu H, Zhang Z, Marinetti A, Guinchard X. Enantioselective Au(I)-Catalyzed Cycloisomerization/Addition of Oxygen Nucleophiles to 2-Alkynylenones by the Tethered Counterion-Directed Catalysis Strategy. Org Lett 2024; 26:9525-9530. [PMID: 39471287 DOI: 10.1021/acs.orglett.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The tethered counterion-directed catalysis (TCDC) strategy enables the Au(I)-catalyzed highly enantioselective synthesis of bicyclic furan derivatives via a reaction sequence combining the cycloisomerization of 2-alkynyl enones and the addition of nucleophiles. A large range of oxygenated nucleophiles, such as water, alcohols, carboxylic acids, and peroxides, have successfully been used as nucleophiles, delivering the chiral furane derivatives in high enantioselectivities (mostly above 90% enantiomeric excess). The CPAphosAuCl complexes were used with catalytic loadings as low as 0.2 mol % in most cases, in combination with silver carbonate as the chloride abstractor.
Collapse
Affiliation(s)
- Hao Xu
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Zhenhao Zhang
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Angela Marinetti
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Xavier Guinchard
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Hsu CK, Liu YH, Liu ST. Preparation of Benzo[ a]fluorenes via Pd-Catalyzed Annulation of 5-(2-Bromophenyl)pent-3-en-1-ynes. J Org Chem 2024; 89:12341-12348. [PMID: 39121450 PMCID: PMC11382150 DOI: 10.1021/acs.joc.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
A palladium-promoted cascade cyclization of 5-(2-bromophenyl)pent-3-en-1-ynes is developed for the synthesis of benzo[a]fluorene derivatives. The reaction proceeds with oxidative addition of C-Br, insertion, C-H activation, and reductive elimination in sequential steps.
Collapse
Affiliation(s)
- Cheng-Kai Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shiuh-Tzung Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
6
|
Wang J, Zheng M, Jia Q, Ren Q, Wu J. Synthesis of Highly Substituted Furans via Intermolecular Enynone-Aldehyde Cross-Coupling/Cyclization Catalyzed by N-Heterocyclic Carbenes. Org Lett 2024; 26:4868-4872. [PMID: 38832854 DOI: 10.1021/acs.orglett.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A new strategy for facile access to multifunctionalized furans via N-heterocyclic carbene-catalyzed cross-coupling/cyclization of ynenones with aldehydes has been explored. This protocol features readily obtainable starting materials, mild and metal-free conditions, broad substrate scope, good functional group tolerance, excellent yields, and easy scale-up. Synthetic utility of the protocol has been further corroborated through functionalization of complex substrates and postmodifications of the product.
Collapse
Affiliation(s)
- Jie Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Mingyue Zheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Qianfa Jia
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Qiao Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, P. R. China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
7
|
Zhao H, Yao L, Gu Y, Niu Y, Han B, Huang W, Zhan G. Cooperative Gold(I)/DMAP Catalysis Enabled (2 + 3) Cycloadditions of Yne-Enones with Oxindole-Derived MBH Carbonates. Org Lett 2024; 26:3790-3795. [PMID: 38666755 DOI: 10.1021/acs.orglett.4c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
A cooperative gold(I)/DMAP system catalyzes the (2 + 3) cycloadditions of yne-enones with oxindole-derived Morita-Baylis-Hillman (MBH) carbonates, yielding diverse bispiro-cyclopentene oxindole products. The mild, scalable protocol demonstrates broad substrate scope and excellent chemo- and diastereoselectivity. Mechanistic study reveals pivotal roles of both catalysts in the unique (2 + 3) cycloaddition. This strategy showcases superiority in achieving transformation with unique chemoselectivity and excellent diastereoselectivity, unattainable through traditional monocatalytic methodologies.
Collapse
Affiliation(s)
- Hongli Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Laiping Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Yiqiao Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Yadi Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| |
Collapse
|
8
|
Medvedkov IA, Nikolayev AA, Yang Z, Goettl SJ, Mebel AM, Kaiser RI. Elucidating the chemical dynamics of the elementary reactions of the 1-propynyl radical (CH 3CC; X 2A 1) with 2-methylpropene ((CH 3) 2CCH 2; X 1A 1). Phys Chem Chem Phys 2024; 26:6448-6457. [PMID: 38319693 DOI: 10.1039/d3cp05872g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Exploiting the crossed molecular beam technique, we studied the reaction of the 1-propynyl radical (CH3CC; X2A1) with 2-methylpropene (isobutylene; (CH3)2CCH2; X1A1) at a collision energy of 38 ± 3 kJ mol-1. The experimental results along with ab initio and statistical calculations revealed that the reaction has no entrance barrier and proceeds via indirect scattering dynamics involving C7H11 intermediates with lifetimes longer than their rotation period(s). The reaction is initiated by the addition of the 1-propynyl radical with its radical center to the π-electron density at the C1 and/or C2 position in 2-methylpropene. Further, the C7H11 intermediate formed from the C1 addition either emits atomic hydrogen or undergoes isomerization via [1,2-H] shift from the CH3 or CH2 group prior to atomic hydrogen loss preferentially leading to 1,2,4-trimethylvinylacetylene (2-methylhex-2-en-4-yne) as the dominant product. The molecular structures of the collisional complexes promote hydrogen atom loss channels. RRKM results show that hydrogen elimination channels dominate in this reaction, with a branching ratio exceeding 70%. Since the reaction of the 1-propynyl radical with 2-methylpropene has no entrance barrier, is exoergic, and all transition states involved are located below the energy of the separated reactants, bimolecular collisions are feasible to form trimethylsubstituted 1,3-enyne (p1) via a single collision event even at temperatures as low as 10 K prevailing in cold molecular clouds such as G+0.693. The formation of trimethylsubstituted vinylacetylene could serve as the starting point of fundamental molecular mass growth processes leading to di- and trimethylsubstituted naphthalenes via the HAVA mechanism.
Collapse
Affiliation(s)
- Iakov A Medvedkov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | | | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Shane J Goettl
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
9
|
Babu US, Kotipalli R, Nanubolu JB, Reddy MS. Pd-Catalyzed Vicinal Intermolecular Annulations of Iodoarenes, Indoles, and Carbazoles with Enynes. Chemistry 2024; 30:e202302788. [PMID: 37929623 DOI: 10.1002/chem.202302788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
Reaching the formidable C-H corners has been one of the top priorities of organic chemists in the recent past. This prompted us to disclose herein a vicinal annulation of 2-iodo benzoates, indoles, and carbazoles with N-embedded 1,6-enynes through 7-/8-membered palladacycles. The relay does not require the assistance of any directing group, leading to multicyclic scaffolds, which are readily diversified to an array of adducts (with new functional tethers and/or three contiguous stereocenters), in which we showcase a rare benzylic mono-oxygenation.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Ramesh Kotipalli
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Jagadeesh Babu Nanubolu
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Jagadeesh Babu Nanubolu, Analytical Department, CSIR-IICT, Hyderabad, 500007, India
| | - Maddi Sridhar Reddy
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
10
|
Tague AJ, Hoang Pham Q, Richardson C, Pyne SG, Hyland CJT. Diastereoselective Pd-catalyzed Decarboxylative (4+2) Cycloaddition Reactions of 4-Vinylbenzoxazinanones and 2-Nitro-1,3-enynes. Chemistry 2023:e202302406. [PMID: 37718289 DOI: 10.1002/chem.202302406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
A formal palladium-catalyzed decarboxylative (4+2) cycloaddition reaction between 4-vinylbenzoxazinanones and 2-nitro-1,3-enynes has been developed to produce highly valuable, densely functionalized tetrahydroquinolines in moderate to excellent yields with high diastereoselectivity under mild reaction conditions. The optimised protocol tolerates a range of substituted 2-nitro-1,3-enynes, which represent an under-utilized class of dipolarophile for transition-metal catalyzed cycloadditions. The employed reaction methodology facilitates efficient cycloaddition with both N-H- and N-Ts-4-vinylbenzoxazinanone dipole precursors. The stereochemistry of the major and minor diastereomeric (4+2) cycloadducts was determined by single crystal X-ray analyses. A mechanistic rationale for the high intrinsic diastereoselectivity and preliminary enantioselective experiments are also presented. The tetrahydroquinoline cycloadduct products feature numerous pendant functionalities, including a vinyl handle, an internal alkyne motif and a nitro functionality (which functions as a latent C-3 nitrogen substituent) for further synthetic manipulations.
Collapse
Affiliation(s)
- Andrew J Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
11
|
Wang Z, Zhang C, Wu J, Li B, Chrostowska A, Karamanis P, Liu SY. trans-Hydroalkynylation of Internal 1,3-Enynes Enabled by Cooperative Catalysis. J Am Chem Soc 2023; 145:5624-5630. [PMID: 36862947 PMCID: PMC10162690 DOI: 10.1021/jacs.3c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A cooperative catalyst system involving a Pd(0)/Senphos complex, tris(pentafluorophenyl)borane, copper bromide, and an amine base, is demonstrated to catalyze trans-hydroalkynylation of internal 1,3-enynes. For the first time, a Lewis acid catalyst is shown to promote the reaction involving the emerging outer-sphere oxidative reaction step. The resulting cross-conjugated dieneynes are versatile synthons for organic synthesis, and their characterization reveals distinct photophysical properties depending on the positioning of the donor/acceptor substituents along the conjugation path.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Chen Zhang
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Jason Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Panaghiotis Karamanis
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
12
|
Li S, Yang W, Shi J, Dan T, Han Y, Cao ZC, Yang M. Synthesis of Trifluoromethyl-Substituted Allenols via Catalytic Trifluoromethylbenzoxylation of 1,3-Enynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Songrong Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wenwen Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Junjie Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Tingting Dan
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Zhi-Chao Cao
- Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| |
Collapse
|
13
|
Zhang Y, Wu J, Ning L, Chen Q, Feng X, Liu X. Enantioselective synthesis of tetrasubstituted allenes via addition/arylation tandem reaction of 2-activated 1,3-enynes. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Li Q, Wang ZL, Xu YH. Copper-catalyzed 1,4-protosilylation and 1,4-protoborylation of enynic orthoesters for synthesis of functionalized 2,3-allenoates. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Tian J, Sun W, Li R, Tian G, Wang X. Borane/Gold(I)‐Catalyzed C−H Functionalization Reactions and Cycloaddition Reactions of Amines and α‐Alkynylenones. Angew Chem Int Ed Engl 2022; 61:e202208427. [DOI: 10.1002/anie.202208427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Jun‐Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Wei Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Rui‐Rui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Gui‐Xiu Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
16
|
Tian JJ, Sun W, Li RR, Tian GX, Wang XC. Borane/Gold(I)‐Catalyzed C–H Functionalization Reactions and Cycloaddition Reactions of Amines and α‐Alkynylenones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Wei Sun
- Nankai University College of Chemistry CHINA
| | - Rui-Rui Li
- Nankai University College of Chemistry CHINA
| | | | - Xiao-Chen Wang
- Nankai University College of Chemistry 94 Weijin Rd 300071 Tianjin CHINA
| |
Collapse
|
17
|
Lin Q, Zheng S, Chen L, Wu J, Li J, Liu P, Dong S, Liu X, Peng Q, Feng X. Catalytic Regio‐ and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water. Angew Chem Int Ed Engl 2022; 61:e202203650. [DOI: 10.1002/anie.202203650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Sujuan Zheng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Long Chen
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jin Wu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
18
|
Lin Q, Zheng S, Chen L, Wu J, Li J, Liu P, Dong S, Liu X, Peng Q, Feng X. Catalytic Regio‐ and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Sujuan Zheng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Long Chen
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jin Wu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
19
|
Miao H, Wang ZX. Ruthenium‐Catalyzed Oxidative Cross Coupling of Alkenes with Triisopropylsilylacetylene. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong Miao
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| | - Zhong-Xia Wang
- University of Science & Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
20
|
Liu YW, Li LJ, Xu H, Dai HX. Palladium-Catalyzed Alkynylation of Enones with Alkynylsilanes via C-C Bond Activation. J Org Chem 2022; 87:6807-6811. [PMID: 35507767 DOI: 10.1021/acs.joc.2c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein the synthesis of 1,3-enynes via palladium-catalyzed cross-coupling between enone derivatives and alkynylsilanes. The employment of an appropriate pyridine-oxazoline ligand is the key to the C-C cleavage and the high E/Z stereoselectivity. This protocol features broad substrate scope and wide functional-group tolerance, affording the desired products in moderate-to-good yields. Late-stage diversification of natural product β-ionone further demonstrated the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Yu-Wen Liu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Jun Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
21
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
22
|
Zhang Z, Sabat N, Frison G, Marinetti A, Guinchard X. Enantioselective Au(I)-Catalyzed Multicomponent Annulations via Tethered Counterion-Directed Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhenhao Zhang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Nazarii Sabat
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Gilles Frison
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 75005 Paris, France
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Xavier Guinchard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
23
|
Wang X, Lv R, Li X. Gold( i)-catalyzed diastereo- and enantioselective [4 + 3] cycloadditions: construction of functionalized furano-benzoxepins. Org Chem Front 2022. [DOI: 10.1039/d2qo01070d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly diastereo- and enantioselective [4 + 3] cycloadditions of 2-(1-alkynyl)-2-alken-1-ones with o-QMs have been realized via a simple chiral gold catalysis, providing facile access to various functionalized furano-benzoxepins.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruifeng Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
24
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
25
|
Bacheley L, Llopis Q, Westermeyer A, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. Synthesis of 2-acetal-1,3-enynes by Sonogashira reaction of bromovinyl acetals with alkynes: application to the formal synthesis of a glucagon antagonist. NEW J CHEM 2022. [DOI: 10.1039/d2nj01541b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of functionalized 1,3-enynes bearing an acetal moiety at the 2-position has been studied through Sonogashira reaction of bromovinyl acetals with various alkyl- and aryl-substituted terminal alkynes.
Collapse
Affiliation(s)
- Lucas Bacheley
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Quentin Llopis
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Anne Westermeyer
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Gérard Guillamot
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Phannarath Phansavath
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
26
|
Li L, Kail S, Weber SM, Hilt G. Indium‐katalysierte Transferhydrierung zur reduktiven Cyclisierung von 2‐Alkinylenonen zu trisubstituierten Furanen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luomo Li
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| | - Sascha Kail
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| | - Sebastian M. Weber
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| | - Gerhard Hilt
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| |
Collapse
|
27
|
Li L, Kail S, Weber SM, Hilt G. Indium-Catalysed Transfer Hydrogenation for the Reductive Cyclisation of 2-Alkynyl Enones towards Trisubstituted Furans. Angew Chem Int Ed Engl 2021; 60:23661-23666. [PMID: 34476880 PMCID: PMC8597135 DOI: 10.1002/anie.202109266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Indexed: 01/04/2023]
Abstract
Indium tribromide catalysed the transfer hydrogenation from dihydroaromatic compounds, such as the commercially available γ-terpinene, to enones, which resulted in the cyclisation to trisubstituted furan derivatives. The reaction was initiated by a Michael addition of a hydride nucleophile to the enone subunit followed by a Lewis-acid-assisted cyclisation and the formation of a furan-indium intermediate and a Wheland intermediate derived from the dihydroaromatic starting material. The product was formed by protonation from the Wheland complex and replaced the indium tribromide substituent. In addition, a site-specific deuterium labelling of the dihydroaromatic HD surrogates resulted in site specific labelling of the products and gave useful insights into the reaction mechanism by H-D scrambling.
Collapse
Affiliation(s)
- Luomo Li
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky-Strasse 9–1126111OldenburgGermany
| | - Sascha Kail
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky-Strasse 9–1126111OldenburgGermany
| | - Sebastian M. Weber
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky-Strasse 9–1126111OldenburgGermany
| | - Gerhard Hilt
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky-Strasse 9–1126111OldenburgGermany
| |
Collapse
|
28
|
Liu Y, Luo P, Fu Y, Hao T, Liu X, Ding Q, Peng Y. Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives. Beilstein J Org Chem 2021; 17:2462-2476. [PMID: 34630726 PMCID: PMC8474070 DOI: 10.3762/bjoc.17.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Great progress has been made in the tandem annulation of enynes in the past few years. This review only presents the corresponding reactions of 1,3-enyne structural motifs to provide the functionalized pyridine and pyrrole derivatives. The functionalization reactions cover iodination, bromination, trifluoromethylation, azidation, carbonylation, arylation, alkylation, selenylation, sulfenylation, amidation, esterification, and hydroxylation. We also briefly introduce the applications of the products and the reaction mechanisms for the synthesis of corresponding N-heterocycles.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Puying Luo
- Department of Gynaecology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, 92 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Yang Fu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Tianxin Hao
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Xuan Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| |
Collapse
|
29
|
Li Z, Zhou H, Xu J. Access to Chiral Polycyclic 1,4-Dihydropyridines via Organocatalytic Formal [3 + 3] Annulation of 2-(1-Alkynyl)-2-alken-1-ones with 3-Aminobenzofurans. Org Lett 2021; 23:6391-6395. [PMID: 34369778 DOI: 10.1021/acs.orglett.1c02211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A rational designed tandem reaction of 2-(1-alkynyl)-2-alken-1-ones with 3-aminobenzofurans enabled by a chiral bifunctional catalyst is described, affording biologically significant polycyclic 1,4-dihydropyridines in moderate to good yields (43-82%) with good to excellent enantioselectivities (83-99%). This formal [3 + 3] annulation reaction reveals good practicality when conducted on a gram scale, and the cycloadduct has the capability for further elaborations.
Collapse
Affiliation(s)
- Zhanhuan Li
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
30
|
Sharma A, Nagaraju K, Rao GA, Gurubrahamam R, Chen K. Asymmetric Organocatalysis of Activated Alkynes and Enynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Akashdeep Sharma
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Koppanathi Nagaraju
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Gunda Ananda Rao
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Ramani Gurubrahamam
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Kwunmin Chen
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| |
Collapse
|
31
|
Takahashi K, Geib SJ, Maeda K, Curran DP, Taniguchi T. Radical trans-Hydroboration of Substituted 1,3-Diynes with an N-Heterocyclic Carbene Borane. Org Lett 2021; 23:1071-1075. [PMID: 33481616 DOI: 10.1021/acs.orglett.0c04284] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monohydroboration of substituted 1,3-diynes with an N-heterocyclic carbene borane (NHC-borane) occurs under radical conditions using an azo initiator, such as ACCN and AIBN, and a thiol as a polarity-reversal catalyst. The reaction is highly regio- and stereoselective and provides stable NHC-(E)-alkynylalkenylboranes.
Collapse
Affiliation(s)
| | - Steven J Geib
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | - Dennis P Curran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | |
Collapse
|
32
|
Yang Y, Jiang YN, Lin ZY, Zeng JH, Liu ZK, Zhan ZP. Highly regio- and stereo-selective heterogeneous 1,3-diyne hydrosilylation controlled by a nickel-metalated porous organic polymer. Org Chem Front 2021. [DOI: 10.1039/d1qo00547b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A porous organic polymer (POL-xantphos) was synthesized and employed as a heterogeneous ligand for nickel catalyzed highly regio- and stereo-selective 1,3-diyne hydrosilylation.
Collapse
Affiliation(s)
- Ying Yang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Ya-Nan Jiang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Zhi-Yi Lin
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Jia-Hao Zeng
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Zhi-Kai Liu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Zhuang-Ping Zhan
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| |
Collapse
|
33
|
Barsu N, Leutzsch M, Fürstner A. Ruthenium-Catalyzed trans-Hydroalkynylation and trans-Chloroalkynylation of Internal Alkynes. J Am Chem Soc 2020; 142:18746-18752. [PMID: 33095568 PMCID: PMC7660751 DOI: 10.1021/jacs.0c08582] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 01/11/2023]
Abstract
[Cp*RuCl]4 catalyzes the addition of iPr3SiC≡CX (X = H, Cl) across internal alkynes with formation of 1,3-enyne or 1-chloro-1,3-enyne derivatives, respectively; the reaction follows an unorthodox trans-addition mode. The well-balanced affinities of the different reaction partners to the ruthenium catalyst ensure that crossed addition prevails over homodimerization of the individual components, as can be deduced from spectroscopic and crystallographic data of various intermediates; this includes a dinuclear complex in which an internal alkyne bridges two [Cp*RuCl] fragments.
Collapse
Affiliation(s)
- Nagaraju Barsu
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|