1
|
He X, Cui Y, Liu G. Synthesis of Dendrimer-Like Molecules with Partial Carbon Chain via Iterative Single Unit Monomer Insertions. Macromol Rapid Commun 2024; 45:e2400158. [PMID: 38651593 DOI: 10.1002/marc.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Carbon-chain dendritic polymers hold unique properties and promising applications. However, synthesizing carbon-chain dendrimers, beyond conjugated ones, remains a challenge. Here, the use of the iterative single unit monomer insertion technique for synthesizing 2.5 generation partial-carbon-chain dendrimers (G2.5) is described, utilizing bismaleimide as the core, a maleimide-trithiocarbonate conjugate as the branching unit, and indene as the spacer unit, following a divergent growth strategy. The optimized conditions for synthesizing the maleimide-trithiocarbonate branching unit are a bismaleimide to trithiocarbonate ratio of 5:1 and a reaction time of 30 min. The structures are verified using 1H nuclear magnetic resonance, gel permeation chromatography, and matrix-assisted laser desorption/ionization-time of flight mass spectra. A four-arm star polymer is then synthesized using the G2.5 as the core. This synthesis of a partial-carbon-chain dendrimer establishes a foundational step toward creating all-carbon-chain ones and may open new application avenues in material science.
Collapse
Affiliation(s)
- Xinying He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yuru Cui
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
2
|
Hakobyan K, Noble B, Xu J. Pyrazole carbodithiolate-driven iterative RAFT single-additions. Chem Commun (Camb) 2024; 60:7443-7446. [PMID: 38946353 DOI: 10.1039/d4cc02219j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this Communication, we comprehensively investigated substituent effects relevant to iterative reversible activation fragmentation chain transfer (RAFT) single unit monomer insertion (SUMI) reactions. Through the use of the pyrazole carbodithiolate (PCDT) "Z-group" as the chain transfer component in RAFT SUMI, we show the importance of "Z-group" effects and its interplay with "R-group" (the carbon-centred radical precursor) effects. We also expanded the scope of RAFT SUMI to new monomer types and sequences thereof. As such, the C-S bond dissocation/reformation steps were found to be crucial factors in SUMI, and it was found that general substituent effects must be wholistically examined for every step of this reaction. This stands in contrast with conventional knowledge of RAFT polymerisation, where the main consideration is often centred around the propagation stage, i.e., the key C-C bond formation step. Indeed, contrary to SUMI, the latter characteristic was observed in the analogous alternating copolymerisation.
Collapse
Affiliation(s)
- Karen Hakobyan
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Benjamin Noble
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Tanaka J, Li J, Clouthier SM, You W. Step-growth polymerization by the RAFT process. Chem Commun (Camb) 2023. [PMID: 37287313 DOI: 10.1039/d3cc01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reversible Addition-Fragmentation Chain Transfer (RAFT) step-growth polymerization is an emerging method that synergistically combines the benefits of RAFT polymerization (functional group and user-friendly nature) and step-growth polymerization (versatility of the polymer backbone). This new polymerization method is generally achieved by using bifunctional reagents of monomer and Chain Transfer Agent (CTA), that efficiently yield Single Monomer Unit Insertion (SUMI) adducts under stoichiometrically balanced conditions. This review covers a brief history of the RAFT-SUMI process and its transformation into RAFT step-growth polymerization, followed by a comprehensive discussion of various RAFT step-growth systems. Furthermore, characterizing the molecular weight evolution of step-growth polymerization is elaborated based on the Flory model. Finally, a formula is introduced to describe the efficiency of the RAFT-SUMI process, assuming rapid chain transfer equilibrium. Examples of reported RAFT step-growth and SUMI systems are then categorized based on the driving force.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jiajia Li
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | | | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Ariyanta HA, Sari FP, Sohail A, Restu WK, Septiyanti M, Aryana N, Fatriasari W, Kumar A. Current roles of lignin for the agroindustry: Applications, challenges, and opportunities. Int J Biol Macromol 2023; 240:124523. [PMID: 37080401 DOI: 10.1016/j.ijbiomac.2023.124523] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Lignin has the potential to be used as an additive, coating agent, fertilizer, plant growth stimulator, and packaging material in the agroindustry due to its functional aromatic structure. The quantitative measurement of functional groups is a significant element of the research for lignin structure since they directly impact their optical, dispersion, and chemical properties. These physical and chemical properties of lignin strongly depend on its type and source and its isolation procedure. Thus, lignin provides numerous opportunities for the circular economy in the agroindustry; however, studying and resolving the challenges associated with its separation, purification, and modification is required. This review discusses the most recent findings on lignin use in agroindustry and historical facts about lignin. The properties of lignin and its roles as coating agents, pesticide carriers, plant growth stimulators, and soil-improving agents have been summarized. The emerging challenges in the field of lignin-based agroindustry are considered, and potential future steps to overcome these challenges are discussed.
Collapse
Affiliation(s)
- Harits Atika Ariyanta
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Department of Pharmacy, Universitas Gunadarma, Depok, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Fahriya Puspita Sari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia.
| | - Asma Sohail
- Department of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan
| | - Witta Kartika Restu
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Melati Septiyanti
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Nurhani Aryana
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Widya Fatriasari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Adarsh Kumar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States.
| |
Collapse
|
5
|
Yang Y, Yu K, Xing F, Zhou Y, Xiao P. Development of Sequence-Controlled, Degradable, and Cytocompatible Oligomers with Explicit Fragmentation Pathways. Macromol Rapid Commun 2023; 44:e2200788. [PMID: 36398569 DOI: 10.1002/marc.202200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Indexed: 11/19/2022]
Abstract
Sequence-defined and degradable polymers can mimic biopolymers, such as peptides and DNA, to undertake life-supporting functions in a chemical way. The design and development of well-structured oligomers/polymers is the most concern for the public, even to further uncover their degradation process illustrating the degraded products and their properties. However, seldom investigation has been reported on the aforementioned aspects. In this work, the alternating photo-reversible addition-fragmentation chain-transfer (photo-RAFT) single unit monomer insertion (SUMI) of different N-substituted maleimides and thermal radical ring-opening SUMI of a cyclic ketene acetal monomer (i.e., 5,6-benzo-2-methylene-1,3-dioxepane (BMDO)) is adopted, to produce two degradable pentamers owing to the conversion of the exo-methylene group of BMDO into ester bonds along the main chains of the prepared products. Moreover, the possible degraded approach of pentamers is studied by combining high-resolution mass spectrometry (HRMS) and liquid chromatography-mass spectrometry (LC-MS) for the first time. This work also sheds light on the precise structures and cytotoxicity of SUMI products and their degraded compounds, proposing a detailed and credible outlook for biomedical applications.
Collapse
Affiliation(s)
- Yili Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou, 510632, China
| | - Keman Yu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Feiyue Xing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Yingshan Zhou
- Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430073, China
| | - Pu Xiao
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
6
|
Bhardwaj S, Gopalakrishnan DK, Garg D, Vaitla J. Bidirectional Iterative Approach to Sequence-Defined Unsaturated Oligoesters. JACS AU 2023; 3:252-260. [PMID: 36711094 PMCID: PMC9875252 DOI: 10.1021/jacsau.2c00641] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Herein, we describe the development of a new strategy for the synthesis of unsaturated oligoesters via sequential metal- and reagent-free insertion of vinyl sulfoxonium ylides into the O-H bond of carboxylic acid. Like two directional coupling of amino acids (N- to C-terminal and C- to N-terminal) in peptide synthesis, the present approach offers a strategy in both directions to synthesize oligoesters. The sequential addition of the vinyl sulfoxonium ylide to the carboxylic acids (acid iteration sequence) in one direction and the sequential addition of the carboxylic acids to the vinyl sulfoxonium ylide (ylide iteration sequence) in another direction yield (Z)-configured unsaturated oligoesters. To perform this iteration, we have developed a highly regioselective insertion of vinyl sulfoxonium ylide into the X-H (X = O, N, C, S, halogen) bond of acids, thiols, phenols, amines, indoles, and halogen acids under metal-free reaction conditions. The insertion reaction is applied to a broad range of substrates (>50 examples, up to 99% yield) and eight iterative sequences. Mechanistic studies suggest that the rate-limiting step depends on the type of X-H insertion.
Collapse
|
7
|
Guo Z, He J. Synthesis of Linear and Cyclic Discrete Oligomers with Defined Sequences via Efficient Anionic Coupling Reaction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenhao Guo
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Junpo He
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Zhang L, Lin S, Xu J. Stereochemistry-Induced Discrimination in Reaction Kinetics of Photo-RAFT Initialization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lei Zhang
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Shiyang Lin
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Precise Pentamers with Diverse Monomer Sequences and Their Thermal Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Miyajima M, Satoh K, Kamigaito M. Periodically Functionalized Sequence‐Regulated Vinyl Polymers via Iterative Atom Transfer Radical Additions and Acyclic Diene Metathesis Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Masato Miyajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐H120 Ookayama, Meguro‐ku Tokyo 152‐8550 Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| |
Collapse
|
11
|
Boeck P, Archer N, Tanaka J, You W. Reversible Addition-Fragmentation Chain Transfer Step-Growth Polymerization with Commercially Available Inexpensive Bis-Maleimides. Polym Chem 2022. [DOI: 10.1039/d2py00236a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, commercially available N-aromatic substituted bismaleimides were used in RAFT step-growth polymerization for the first time. In our initial report (J. Am. Chem. Soc. 2021, 143 (39), 15918-15923), maleimide precursors...
Collapse
|
12
|
Clouthier SM, Tanaka J, You W. Photomediated RAFT step-growth polymerization with maleimide monomers. Polym Chem 2022. [DOI: 10.1039/d2py01166b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Photomediated RAFT step-growth polymerization was performed with and without the presence of a photocatalyst using a trithiocarbonate-based CTA and a maleimide monomer.
Collapse
Affiliation(s)
- Samantha Marie Clouthier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Joji Tanaka
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| |
Collapse
|
13
|
Hakobyan K, Xu J, Müllner M. The challenges of controlling polymer synthesis at the molecular and macromolecular level. Polym Chem 2022. [DOI: 10.1039/d1py01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we outline advances and challenges in controlling the structure of polymers at various size regimes in the context of structural features such as molecular weight distribution, end groups, architecture, composition and sequence.
Collapse
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Liu R, Yang C, Huang Z, French R, Gu Z, Cheng J, Guo K, Xu J. Unraveling Sequence Effect on Glass Transition Temperatures of Discrete Unconjugated Oligomers. Macromol Rapid Commun 2021; 43:e2100666. [PMID: 34850490 DOI: 10.1002/marc.202100666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Sequence plays a critical role in enabling unique properties and functions of natural biomolecules, which has promoted the rapid advancement of synthetic sequence-defined polymers in recent decades. Particularly, investigation of short chain sequence-defined oligomers (also called discrete oligomers) on their properties has become a hot topic. However, most studies have focused on discrete oligomers with conjugated structures. In contrast, unconjugated oligomers remain relatively underexplored. In this study, three pairs of discrete oligomers with the same composition but different sequence for each pair are employed for investigating their glass transition temperatures (Tg s). The resultant Tg s of sequenced oligomers in each pair are found to be significantly different (up to 11.6 °C), attributable to variations in molecular packing as demonstrated by molecular dynamics and density function theory simulations. Intermolecular interaction is demonstrated to have less impact on Tg s than intramolecular interaction. The mechanistic investigation into two model dimers suggests that monomer sequence caused the difference in intramolecular rotational flexibility of the sequenced oligomers. In addition, despite having different monomer sequence and Tg s, the oligomers have very similar solubility parameters, which supports their potential use as effective oligomeric plasticizers to tune the Tg s of bulk polymer materials.
Collapse
Affiliation(s)
- Ruizhe Liu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Chao Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zixuan Huang
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rohan French
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jianli Cheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
15
|
Zhang L, Liu R, Lin S, Xu J. PET-RAFT single unit monomer insertion of β-methylstyrene derivatives: RAFT degradation and reaction selectivity. Chem Commun (Camb) 2021; 57:10759-10762. [PMID: 34585689 DOI: 10.1039/d1cc03927j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) single unit monomer insertion (SUMI) of β-methylstyrene derivatives into diverse RAFT agents presented fast reaction kinetics, but significant degradation of the SUMI products occurred due to a hydrogen abstraction reaction. Fortunately, such degradation can be suppressed through appropriate design of initial RAFT agents attributed to effective chain transfer and selective photoactivation.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Ruizhe Liu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Shiyang Lin
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Tanaka J, Archer NE, Grant MJ, You W. Reversible-Addition Fragmentation Chain Transfer Step-Growth Polymerization. J Am Chem Soc 2021; 143:15918-15923. [PMID: 34581557 DOI: 10.1021/jacs.1c07553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reversible-addition fragmentation chain transfer (RAFT) polymerization has been widely explored since its discovery due to its structural precision, versatility, and efficiency. However, the lack of tunability of the polymer backbone limits some applications. Herein, we synergistically combine RAFT and step-growth polymerization mechanisms, by employing a highly selective insertion process of a single monomer with a RAFT agent, to achieve RAFT step-growth polymerization. A unique feature of the RAFT step-growth polymers is that each backbone repeat unit bears a pendant RAFT agent, which can subsequently graft side chains in a second polymerization step and afford molecular brush polymers. Enabled by cleavable backbone functionality, we demonstrate transformation of the resulting brushlike polymers into linear chains of uniform size upon a stimulus.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Noel Edward Archer
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Michael Jeffery Grant
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Synthesis of lignin-based hydrogels and their applications in agriculture: A review. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01712-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Li C, Han L, Chen X, Bao X, Sun Q, Ma H, Li Y. Regulation of tectonic sequences in chain-folding-directed monodisperse isomeric oligomers precisely tailored by Ugi-hydrosilylation orthogonal cycles. Polym Chem 2021. [DOI: 10.1039/d1py00416f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monodisperse discrete oligomers with a tailored sequence of linkages within their backbones, which has been defined as a tectonic sequence, were precisely constructed through Ugi-4CRs coupled to hydrosilylation orthogonal cycles.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Li Han
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Xiping Chen
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Xinyu Bao
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Qi Sun
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
19
|
Zhang L, Liu R, Huang Z, Xu J. How does the single unit monomer insertion technique promote kinetic analysis of activation and initiation in photo-RAFT processes? Polym Chem 2021. [DOI: 10.1039/d0py01413c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The single unit monomer insertion technique provides a simple platform for the kinetic investigation of early stage of photo-RAFT process that comprises photo-activation of initial RAFT agents and addition of RAFT leaving radicals to the monomers.
Collapse
Affiliation(s)
- Lei Zhang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Ruizhe Liu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Zixuan Huang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| |
Collapse
|
20
|
Miyajima M, Satoh K, Kamigaito M. Sequence-regulated vinyl polymers via iterative atom transfer radical additions and acyclic diene metathesis polymerization. Polym Chem 2021. [DOI: 10.1039/d0py01564d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Iterative ATRAs and ADMET polymerization enabled the synthesis of sequence-regulated vinyl polymers without statistical distribution of monomer compositions and sequences.
Collapse
Affiliation(s)
- Masato Miyajima
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
21
|
Hess A, Schmidt BVKJ, Schlaad H. Aminolysis induced functionalization of (RAFT) polymer-dithioester with thiols and disulfides. Polym Chem 2020. [DOI: 10.1039/d0py01365j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Efficient exchange of the polymer-dithioester end group by aminolysis/functionalization with thiol or disulfide under ambient atmospheric conditions.
Collapse
Affiliation(s)
- Andreas Hess
- University of Potsdam
- Institute of Chemistry
- 14476 Potsdam
- Germany
| | | | - Helmut Schlaad
- University of Potsdam
- Institute of Chemistry
- 14476 Potsdam
- Germany
| |
Collapse
|