1
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Hager L, Hegelheimer M, Stonawski J, Freiberg ATS, Jaramillo-Hernández C, Abellán G, Hutzler A, Böhm T, Thiele S, Kerres J. Novel side chain functionalized polystyrene/O-PBI blends with high alkaline stability for anion exchange membrane water electrolysis (AEMWE). JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:22347-22359. [PMID: 38013811 PMCID: PMC10597322 DOI: 10.1039/d3ta02978f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
We report the synthesis of a polystyrene-based anion exchange polymer bearing the cationic charge at a C6-spacer. The polymer is prepared by a functionalized monomer strategy. First, a copper halide catalyzed C-C coupling reaction between a styryl Grignard and 1,6-dibromohexane is applied, followed by quaternization with N-methylpiperidine and free radical polymerization. The novel polymer is blended with the polybenzimidazole O-PBI to yield mechanically stable blend membranes representing a new class of anion exchange membranes. In this regard, the ratio of the novel anion exchange polymer to O-PBI is varied to study the influence on water uptake and ionic conductivity. Blend membranes with IECs between 1.58 meq. OH- g-1 and 2.20 meq. OH- g-1 are prepared. The latter shows excellent performance in AEMWE, reaching 2.0 A cm-2 below 1.8 V in 1 M KOH at 70 °C, with a minor degradation rate from the start. The blend membranes show no conductivity loss after immersion in 1 M KOH at 85 °C for six weeks indicating high alkaline stability.
Collapse
Affiliation(s)
- Linus Hager
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Manuel Hegelheimer
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Julian Stonawski
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Anna T S Freiberg
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | | | - Gonzalo Abellán
- Institute of Molecular Science, University of Valencia c/ Catedrático José Beltrán 2 Paterna Spain
| | - Andreas Hutzler
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
| | - Thomas Böhm
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
| | - Simon Thiele
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Jochen Kerres
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Chemical Resource Beneficiation Faculty of Natural Sciences, North-West University Potchefstroom 2520 South Africa
| |
Collapse
|
3
|
Aili D, Kraglund MR, Rajappan SC, Serhiichuk D, Xia Y, Deimede V, Kallitsis J, Bae C, Jannasch P, Henkensmeier D, Jensen JO. Electrode Separators for the Next-Generation Alkaline Water Electrolyzers. ACS ENERGY LETTERS 2023; 8:1900-1910. [PMID: 37090167 PMCID: PMC10111418 DOI: 10.1021/acsenergylett.3c00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Multi-gigawatt-scale hydrogen production by water electrolysis is central in the green transition when it comes to storage of energy and forming the basis for sustainable fuels and materials. Alkaline water electrolysis plays a key role in this context, as the scale of implementation is not limited by the availability of scarce and expensive raw materials. Even though it is a mature technology, the new technological context of the renewable energy system demands more from the systems in terms of higher energy efficiency, enhanced rate capability, as well as dynamic, part-load, and differential pressure operation capability. New electrode separators that can support high currents at small ohmic losses, while effectively suppressing gas crossover, are essential to achieving this. This Focus Review compares the three main development paths that are currently being pursued in the field with the aim to identify the advantages and drawbacks of the different approaches in order to illuminate rational ways forward.
Collapse
Affiliation(s)
- David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Mikkel Rykær Kraglund
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Sinu C. Rajappan
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Dmytro Serhiichuk
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Yifan Xia
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Valadoula Deimede
- Department
of Chemistry, University of Patras, 26504, Patras, Greece
| | - Joannis Kallitsis
- Department
of Chemistry, University of Patras, 26504, Patras, Greece
| | - Chulsung Bae
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Dirk Henkensmeier
- Hydrogen·Fuel
Cell Research Center, Korea Institute of
Science andTechnology, Seoul 02792, Republic
of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Green School, Korea University, Seoul 02841, Republic
of Korea
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| |
Collapse
|
5
|
Yu N, Dong J, Wang T, Jin Y, Tang W, Yang J. Two new anion exchange membranes based on poly(bis-arylimidazolium) ionenes blend polybenzimidazole. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Lindenmeyer KM, Miller KM. Thiol‐yne photoclick polymerization as a method for preparing
imidazolium‐containing
ionene networks. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Kevin M. Miller
- Department of Chemistry Murray State University Murray Kentucky USA
| |
Collapse
|