1
|
Liu Z, Arima K, Nishiki N, Kuwabara R, Ishitani S, Matsui T, Tanaka M. Graphite Sheet-Assisted Laser Desorption Ionization-Mass Spectrometry for Small Organic Compound Analysis. ACS OMEGA 2024; 9:27739-27747. [PMID: 38947851 PMCID: PMC11209903 DOI: 10.1021/acsomega.4c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Carbon-based nanopowders have been used as ionization materials for laser desorption ionization-mass spectrometry (LDI-MS) and are very efficient at detection in low m/z regions. In this study, we aimed to develop a new sheet-type graphite material that possessed a randomly grooved nanostructured surface consisting of developed sp2-conjugated atomic carbon to facilitate the desorption/ionization of small compounds in LDI-MS. The graphite sheet exhibited higher UV absorption and provided higher ionization efficiency and survival yield in the LDI-MS detection of a thermometer ion, 4-chloro-benzopyridinium, than those of highly oriented graphite plates. These properties demonstrate that the present graphite sheet is suited for use as an LDI-MS material. Graphite sheet-assisted LDI-MS successfully detected various substances, including amino acids, peptides, and polyethylene glycol polymers, with higher ion intensities and less noise than those associated with conventional organic matrix-assisted LDI-MS (MALDI-MS). Furthermore, graphite sheet-assisted LDI-MS analysis provided more peaks (252 peaks) derived from soy sauce than those obtained by MALDI-MS (36 peaks) and required fewer preparation processes (dilution and air-dried) compared with previously established graphite carbon black-assisted LDI-MS (171 peaks) in the positive mode. This study demonstrates that graphite sheet-assisted LDI-MS has the potential for small organic compound analyses in the biomedical and food science fields.
Collapse
Affiliation(s)
- Zhuofei Liu
- Faculty
of Agriculture, Graduate School of Kyushu
University, Fukuoka 819-0395, Japan
| | - Keishiro Arima
- Faculty
of Agriculture, Graduate School of Kyushu
University, Fukuoka 819-0395, Japan
| | - Naomi Nishiki
- Manufacturing
Innovation Division, Panasonic Holdings
Co., Osaka 571-8502, Japan
| | - Ryou Kuwabara
- Manufacturing
Innovation Division, Panasonic Holdings
Co., Osaka 571-8502, Japan
| | - Shinji Ishitani
- Manufacturing
Innovation Division, Panasonic Holdings
Co., Osaka 571-8502, Japan
| | - Toshiro Matsui
- Faculty
of Agriculture, Graduate School of Kyushu
University, Fukuoka 819-0395, Japan
- Research
and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Faculty
of Agriculture, Graduate School of Kyushu
University, Fukuoka 819-0395, Japan
- Research
and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Huang X, Wang B, Zhai R, Ding CF, Fang X, Dai X, Yan Y. Boric acids decorated polymers with Au nanoparticle anchor assisted laser desorption/ionization for qualitive and quantitative analysis of hydroxytyrosol in red wines. Food Chem 2024; 437:137873. [PMID: 37918150 DOI: 10.1016/j.foodchem.2023.137873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Hydroxytyrosol possesses a variety of biological and pharmacological activities that are beneficial to human health. However, the methodologies for its detection always suffered from problems. In this work, the gold nanoparticle modified polymer decorated with boric acids (pMBA/VPBA@Au) was synthesized and used both as the adsorbent and matrix to enrich and ionize small molecule substances through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The pMBA/VPBA@Au displayed a low detection limit (8 × 10-6 M) and high selectivity (1:100) for the enrichment of hydroxytyrosol, and the linear correlation curve between the concentration of hydroxytyrosol and the intensity of MS had a good correlation (10-4-10-2 M, R2 = 0.997). Additionally, the pMBA/VPBA@Au was used to quantify hydroxytyrosol in red wines, and the contents were 0.053-0.094 μg/mL. In general, a simple and novel method for the detection of hydroxytyrosol by SALDI-MS using boric acid functionalized polymer was developed for the first time, showing a good practical application value.
Collapse
Affiliation(s)
- Xiaohui Huang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Molina-Millán L, Körber A, Flinders B, Cillero-Pastor B, Cuypers E, Heeren RMA. MALDI-2 Mass Spectrometry for Synthetic Polymer Analysis. Macromolecules 2023; 56:7729-7736. [PMID: 37841532 PMCID: PMC10569092 DOI: 10.1021/acs.macromol.3c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Synthetic polymers are ubiquitous in daily life, and their properties offer diverse benefits in numerous applications. However, synthetic polymers also present an increasing environmental burden through their improper disposal and subsequent degradation into secondary micro- and nanoparticles (MNPs). These MNPs accumulate in soil and water environments and can ultimately end up in the food chain, resulting in potential health risks. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has the potential to study localized biological or toxicological changes in organisms exposed to MNPs. Here, we investigate whether MALDI-2 postionization can provide a sensitivity enhancement in polymer analysis that could contribute to the study of MNPs. We evaluated the effect of MALDI-2 by comparing MALDI and MALDI-2 ion yields from polyethyleneglycol (PEG), polypropylene glycol (PPG), polytetrahydrofuran (PTHF), nylon-6, and polystyrene (PS). MALDI-2 caused a signal enhancement of the protonated species for PEG, PPG, PTHF, and nylon-6. PS, by contrast, preferentially formed radical ions, which we attribute to direct resonance-enhanced multiphoton ionization (REMPI). REMPI of PS led to an improvement in sensitivity by several orders of magnitude, even without cationizing salts. The improved sensitivity demonstrated by MALDI-2 for all polymers tested highlights its potential for studying the distribution of certain classes of polymers in biological systems.
Collapse
Affiliation(s)
- Lidia Molina-Millán
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Aljoscha Körber
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Bryn Flinders
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- The
MERLN Institute for Technology-Inspired Regenerative Medicine, Department
of Cell Biology-Inspired Tissue Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Yin SJ, Chen H, Wang S, Wang Y, Yang FQ. Preparation of core-shell MOF@MOF nanoparticle as matrix for the analysis of rhubarb anthraquinones in plasma by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Heliyon 2023; 9:e16245. [PMID: 37234671 PMCID: PMC10205635 DOI: 10.1016/j.heliyon.2023.e16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A core-shell structure UiO-66-(OH)2@UiO-66-NH2 (MOF@MOF) nanoparticle was synthesized through a simple hydrothermal method and employed as an adsorbent and laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) matrix for the quantitative analysis of rhubarb anthraquinones (RAs). The properties of the materials were characterized by field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller. The results indicate that MOF@MOF is regular octahedral structure with a size distribution of about 100 nm, having large BET specific surface area (920 m2/g). Using the MOF@MOF as a matrix shows lower background interference, higher sensitivity, and better storage stability than that of traditional matrices. The MOF@MOF matrix exhibits excellent salt tolerance even under a NaCl concentration of 150 mM. Then, the enrichment conditions were optimized, and the adsorption time of 10 min, adsorption temperature of 40 °C and adsorbent amount of 100 μg were selected. In addition, the possible mechanism of MOF@MOF as an adsorbent and matrix was discussed. Finally, the MOF@MOF nanoparticle was employed as a matrix for the sensitive MALDI-TOF-MS analysis of RAs in spiked rabbit plasma, and the recoveries are in the range of 88.3-101.5% with RSD ≤9.9%. In short, the novel MOF@MOF matrix has demonstrated its potential in the analysis of small-molecule compounds in biological samples.
Collapse
Affiliation(s)
- Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
5
|
Khajavinia A, El-Aneed A. Carbon-Based Nanoparticles and Their Surface-Modified Counterparts as MALDI Matrices. Anal Chem 2023; 95:100-114. [PMID: 36625120 DOI: 10.1021/acs.analchem.2c04537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amir Khajavinia
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
6
|
Habumugisha T, Zhang Z, Ndayishimiye JC, Nkinahamira F, Kayiranga A, Cyubahiro E, Rehman A, Yan C, Zhang X. Evaluation and optimization of the influence of silver cluster ions on the MALDI-TOF-MS analysis of polystyrene nanoplastic polymers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:763-772. [PMID: 35112122 DOI: 10.1039/d1ay02219a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the analysis of polystyrene nanoplastics (PSNs), a nonpolar polymer (NP), using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), silver salts were used as cationization reagents and simultaneously brought the potential problems of silver clusters that interfered with the PSN signal of MS. To detect PSNs, silver trifluoroacetate (AgTFA) and silver nitrate (AgNO3) were mixed with five polar matrices, namely 2-(4-hydroxyphenylazo) benzoic acid (HABA), dithranol (DI), sinapic acid (SA), trans-3-indoleacrylic acid (IAA), and 2,5-dihydroxybenzoic acid (DHB), and three nonpolar matrices, namely pyrene (PRN), anthracene (ATH) and acenaphthene (ACTH). The results showed that silver salt cluster ions were detected in the range of m/z 1000-4000. Five polar matrices with silver salts produced silver clusters, which interfered with the signals in the mass spectrum of PSNs, but the combination of these matrices with copper II chloride (CuCl2) salt did not produce copper-related clusters. However, the use of nonpolar matrices such as PRN, ATH or ACTH significantly decreased the signals of silver salt cluster ions, and this alteration of matrix types is considered a promising optimization approach for silver cluster ions. The nonpolar matrix conditions were optimized without producing silver cluster ions and the optimal detection conditions were found to be under nonpolar matrices (e.g., pyrene) with silver salts (e.g., AgTFA). The results suggest that when polar matrices, such as HABA, DI, SA, IAA, and DHB, are combined with silver salts in MALDI-TOF-MS analysis, silver-related clusters are detected in the range of m/z 1000-4000. Inhibition of the production of silver cluster ions can be achieved by the use of a nonpolar matrix (e.g., PRN) or polar matrix (e.g., DHB) with copper salts.
Collapse
Affiliation(s)
- Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jean Claude Ndayishimiye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - François Nkinahamira
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexis Kayiranga
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Cyubahiro
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
7
|
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180:114079. [PMID: 34902516 PMCID: PMC8899923 DOI: 10.1016/j.addr.2021.114079] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.
Collapse
Key Words
- Poly(ethylene)glycol, PEG, immunogenicity, immunology, nanomedicine, toxicity, anti-PEG antibodies, hypersensitivity, synthesis, drug delivery, biotherapeutics
Collapse
Affiliation(s)
- Da Shi
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Damian Beasock
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Adam Fessler
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | | | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
8
|
Conway U, Warren AD, Gates PJ. A study of the application of graphite MALDI to the analysis of lanthanides and deconvolution of the isobaric species observed. Analyst 2021; 146:5988-5994. [PMID: 34499060 DOI: 10.1039/d1an00981h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry has always suffered from matrix interference at low-masses making it an unsuitable method for the analysis of low molecular weight analytes. In recent years, there has been considerable interest in the use of graphite as a matrix. In this study, we demonstrate the application of colloidal graphite for the analysis of lanthanides in the positive ion mode. Positive ion mode is of academic interest as spectra are dominated by lanthanide cations, oxides, hydroxides and carbides with the metal having been reduced to oxidation state I, II or III. The ratios of the different ions are considered in terms of redox potentials of the lanthanides and rates of reaction with oxygen. Positive ion mode is shown to be useful as a rapid technique for confirming which metal(s) are present in a sample which can have an application in environmental monitoring, for example. Demonstration of a least squares approach to deconvolution is applied for the complete separation and relative quantification of the different isobaric species observed due to the complex isotope distributions of some lanthanides.
Collapse
Affiliation(s)
- Ulric Conway
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Alexander D Warren
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK. .,Interface Analysis Centre, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Paul J Gates
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
9
|
Gates PJ. Atmospheric pressure chemical ionisation mass spectrometry for the routine analysis of low molecular weight analytes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:13-28. [PMID: 33820464 PMCID: PMC8054169 DOI: 10.1177/14690667211005055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The routine analysis of low molecular weight analytes by mass spectrometry is often complicated by the lability of the analyte's functional groups and/or the lack of moieties that can be easily charged. If a molecule is too labile this precludes analysis by techniques such as electron ionisation or chemical ionisation as the analyte will undergo thermal decomposition prior to ionisation as well as spontaneous fragmentation during the ionisation process. If the analyte has a low propensity to form ions in electrospray ionisation (i.e., lacks acidic or basic sites) then often no analyte related ions are observed. In this paper, the robustness and versatility of the established method of atmospheric pressure chemical ionisation is demonstrated for the analysis of low molecular weight analytes. The utility of the technique is demonstrated through the analysis of 30 reference standards of varying functionality, and further by the analysis of 75 synthetic samples which were problematic when analysed by electron or electrospray ionisation. The resulting spectra are dominated by intact molecular species ([M+H]+ and M+ in positive ion mode and [M - H]- and [M + Cl]- in negative ion mode) along with logical neutral losses reminiscent of what you might expect from the analyte's structure (losses of H2O from alcohols or CO from aldehydes etc). This paper presents atmospheric pressure chemical ionisation as an essential tool for broadening the chemical space of successful analyses for any routine mass spectrometry service laboratory of facility.
Collapse
Affiliation(s)
- Paul J Gates
- Paul J Gates, School of Chemistry,
University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK.
| |
Collapse
|