1
|
Guo M, Temperton R, D'Acunto G, Johansson N, Jones R, Handrup K, Ringelband S, Prakash O, Fan H, de Groot LHM, Hlynsson VF, Kaufhold S, Gordivska O, Velásquez González N, Wärnmark K, Schnadt J, Persson P, Uhlig J. Using Iron L-Edge and Nitrogen K-Edge X-ray Absorption Spectroscopy to Improve the Understanding of the Electronic Structure of Iron Carbene Complexes. Inorg Chem 2024; 63:12457-12468. [PMID: 38934422 PMCID: PMC11234367 DOI: 10.1021/acs.inorgchem.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Iron-centered N-heterocyclic carbene compounds have attracted much attention in recent years due to their long-lived excited states with charge transfer (CT) character. Understanding the orbital interactions between the metal and ligand orbitals is of great importance for the rational tuning of the transition metal compound properties, e.g., for future photovoltaic and photocatalytic applications. Here, we investigate a series of iron-centered N-heterocyclic carbene complexes with +2, + 3, and +4 oxidation states of the central iron ion using iron L-edge and nitrogen K-edge X-ray absorption spectroscopy (XAS). The experimental Fe L-edge XAS data were simulated and interpreted through restricted-active space (RAS) and multiplet calculations. The experimental N K-edge XAS is simulated and compared with time-dependent density functional theory (TDDFT) calculations. Through the combination of the complementary Fe L-edge and N K-edge XAS, direct probing of the complex interplay of the metal and ligand character orbitals was possible. The σ-donating and π-accepting capabilities of different ligands are compared, evaluated, and discussed. The results show how X-ray spectroscopy, together with advanced modeling, can be a powerful tool for understanding the complex interplay of metal and ligand.
Collapse
Affiliation(s)
- Meiyuan Guo
- Division of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | | | - Giulio D'Acunto
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
- Department of Chemical Engineering, Stanford University, 94305 Stanford, California, United States
| | | | - Rosemary Jones
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
| | | | - Sven Ringelband
- Division of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Om Prakash
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Hao Fan
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Lisa H M de Groot
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Valtýr Freyr Hlynsson
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Simon Kaufhold
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Olga Gordivska
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | | | - Kenneth Wärnmark
- NanoLund, Lund University, 22100 Lund, Sweden
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Joachim Schnadt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
| | - Petter Persson
- NanoLund, Lund University, 22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
- LINXS Institute of Advanced Neutron and X-Ray Science, Lund University, 22370 Lund, Sweden
| |
Collapse
|
2
|
Guo M, Braun A, Sokaras D, Kroll T. Iron Kβ X-ray Emission Spectroscopy: The Origin of Spectral Features from Atomic to Molecular Systems Using Multi-configurational Calculations. J Phys Chem A 2024; 128:1260-1273. [PMID: 38329897 DOI: 10.1021/acs.jpca.3c07949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Kβ X-ray emission spectroscopy (XES) is widely used to fingerprint the local spin of transition-metal ions, including in pump-probe experiments, to identify excited states or in chemical and biological reactions to characterize short-lived intermediates. In this study, the spectra of ferrous and ferric complexes for various spin states were measured experimentally and described theoretically through restricted active space (RAS) calculations including dynamic correlations. Through the RAS calculations from simple atomic models to complex molecular systems, spectral effects such as the exchange interactions, crystal-field strength, and covalent orbital mixing were evaluated and discussed. The calculations find that only the spectral features of low-spin cases show a dependence on the crystal-field strength, particularly for ferrous low spin. The effect of the covalent orbital mixing strength on the first moment of the Kβ1,3 main line and the Kβ1,3-Kβ' energy splitting is quantitatively described. Clear relationships are found within a given nominal spin but less between different spin states, which calls for careful selection of reference spectra in future experiments. This study further advances our understanding of the correlation between changes in experimental spectral features and their corresponding electronic structure information.
Collapse
Affiliation(s)
- Meiyuan Guo
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
3
|
Wang SY, Zhang JR, Guo M, Hua W. Interpreting the Cu-O 2 Antibonding Nature in Two Cu-O 2 Complexes from Cu L-Edge X-ray Absorption Spectra. Inorg Chem 2023; 62:17115-17125. [PMID: 37828769 DOI: 10.1021/acs.inorgchem.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cu-O2 structures play important roles in bioinorganic chemistry and enzyme catalysis, where the bonding between the Cu and O2 parts serves as a fundamental research concern. Here, we performed a multiconfigurational study on the copper L2,3-edge X-ray absorption spectra (XAS) of two copper enzyme model complexes to gain a better understanding of the antibonding nature from the clearly interpreted structure-spectroscopy relation. We obtained spectra in good agreement with the experiments by using the restricted active space second-order perturbation theory (RASPT2) method, which facilitated reliable chemical analysis. Spectral feature interpretations were supported by computing the spin-orbit natural transition orbitals. All major features were assigned to be mainly from Cu 2p to antibonding orbitals between Cu 3d and O2 π*, Cu 3d-πO-O* (type A), and a few also to mixed antibonding/bonding orbitals between Cu 3d and O2 π, Cu 3d ± πO-O (type M). Our calculations provided a clear illustration of the interactions between Cu 3d and O2 π*/π orbitals that are carried in the metal L-edge XAS.
Collapse
Affiliation(s)
- Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Meiyuan Guo
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 75105, Sweden
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
4
|
Electronic structures and ligand effect on redox potential of iron and cobalt complexes: a computational insight. Struct Chem 2023. [DOI: 10.1007/s11224-022-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
5
|
Dou Y, Yuan D, Yu L, Zhang W, Zhang L, Fan K, Al-Mamun M, Liu P, He CT, Zhao H. Interpolation between W Dopant and Co Vacancy in CoOOH for Enhanced Oxygen Evolution Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104667. [PMID: 34693576 DOI: 10.1002/adma.202104667] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm-2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.
Collapse
Affiliation(s)
- Yuhai Dou
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
- Shandong Institute of Advanced Technology, Jinan, 250100, China
| | - Ding Yuan
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Linping Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China
| | - Weiping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lei Zhang
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Kaicai Fan
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Mohammad Al-Mamun
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Porun Liu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Chun-Ting He
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| |
Collapse
|
6
|
Temperton RH, Guo M, D'Acunto G, Johansson N, Rosemann NW, Prakash O, Wärnmark K, Schnadt J, Uhlig J, Persson P. Resonant X-ray photo-oxidation of light-harvesting iron (II/III) N-heterocyclic carbene complexes. Sci Rep 2021; 11:22144. [PMID: 34772983 PMCID: PMC8590020 DOI: 10.1038/s41598-021-01509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022] Open
Abstract
Two photoactive iron N-heterocyclic carbene complexes \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\hbox {Fe}^{{{\rm{II}}}}(\hbox {btz})_2(\hbox {bpy})]^{2+}}$$\end{document}[FeII(btz)2(bpy)]2+ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\hbox {Fe}^{{\rm{III}}}(\hbox {btz})_3]^{3+}}$$\end{document}[FeIII(btz)3]3+, where btz is 3,3’-dimethyl-1,1’-bis(p-tolyl)-4,4’-bis(1,2,3-triazol-5-ylidene) and bpy is 2,2’-bipyridine, have been investigated by Resonant Photoelectron Spectroscopy (RPES). Tuning the incident X-ray photon energy to match core-valence excitations provides a site specific probe of the electronic structure properties and ligand-field interactions, as well as information about the resonantly photo-oxidised final states. Comparing measurements of the Fe centre and the surrounding ligands demonstrate strong mixing of the Fe \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hbox {t}_{{\rm{2g}}}}$$\end{document}t2g levels with occupied ligand \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π orbitals but weak mixing with the corresponding unoccupied ligand orbitals. This highlights the importance of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π-accepting and -donating considerations in ligand design strategies for photofunctional iron carbene complexes. Spin-propensity is also observed as a final-state effect in the RPES measurements of the open-shell \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Fe}^{{\rm{III}}}$$\end{document}FeIII complex. Vibronic coupling is evident in both complexes, where the energy dispersion hints at a vibrationally hot final state. The results demonstrate the significant impact of the iron oxidation state on the frontier electronic structure and highlights the differences between the emerging class of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Fe}^{{\rm{III}}}$$\end{document}FeIII photosensitizers from those of more traditional \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Fe}^{{\rm{II}}}$$\end{document}FeII complexes.
Collapse
Affiliation(s)
- Robert H Temperton
- MAX IV Laboratory, Lund University, Box 118, 221 00, Lund, Sweden.,School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.,Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden
| | - Meiyuan Guo
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Giulio D'Acunto
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Niclas Johansson
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Nils W Rosemann
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Om Prakash
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Box 124, 221 00, Lund, Sweden
| | - Kenneth Wärnmark
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Box 124, 221 00, Lund, Sweden
| | - Joachim Schnadt
- MAX IV Laboratory, Lund University, Box 118, 221 00, Lund, Sweden. .,Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden. .,Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden.
| | - Jens Uhlig
- Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden. .,Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.
| | - Petter Persson
- Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden. .,Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
7
|
Schubert K, Guo M, Atak K, Dörner S, Bülow C, von Issendorff B, Klumpp S, Lau JT, Miedema PS, Schlathölter T, Techert S, Timm M, Wang X, Zamudio-Bayer V, Schwob L, Bari S. The electronic structure and deexcitation pathways of an isolated metalloporphyrin ion resolved by metal L-edge spectroscopy. Chem Sci 2021; 12:3966-3976. [PMID: 34163667 PMCID: PMC8179464 DOI: 10.1039/d0sc06591a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/23/2021] [Indexed: 11/21/2022] Open
Abstract
The local electronic structure of the metal-active site and the deexcitation pathways of metalloporphyrins are crucial for numerous applications but difficult to access by commonly employed techniques. Here, we applied near-edge X-ray absorption mass spectrometry and quantum-mechanical restricted active space calculations to investigate the electronic structure of the metal-active site of the isolated cobalt(iii) protoporphyrin IX cation (CoPPIX+) and its deexcitation pathways upon resonant absorption at the cobalt L-edge. The experiments were carried out in the gas phase, thus allowing for control over the chemical state and molecular environment of the metalloporphyrin. The obtained mass spectra reveal that resonant excitations of CoPPIX+ at the cobalt L3-edge lead predominantly to the formation of the intact radical dication and doubly charged fragments through losses of charged and neutral side chains from the macrocycle. The comparison between experiment and theory shows that CoPPIX+ is in a 3A2g triplet ground state and that competing excitations to metal-centred non-bonding and antibonding σ* molecular orbitals lead to distinct deexcitation pathways.
Collapse
Affiliation(s)
- Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - Meiyuan Guo
- Division of Chemical Physics, Chemical Center, Lund University SE-221 00 Lund Sweden
| | - Kaan Atak
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - Christine Bülow
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie 12489 Berlin Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg 79104 Freiburg Germany
| | - Stephan Klumpp
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - J Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie 12489 Berlin Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg 79104 Freiburg Germany
| | | | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen 9747 AG Groningen The Netherlands
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
- Institut für Röntgenphysik, Georg-August-Universität Göttingen 37077 Göttingen Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie 12489 Berlin Germany
| | - Xin Wang
- Zernike Institute for Advanced Materials, University of Groningen 9747 AG Groningen The Netherlands
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie 12489 Berlin Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| |
Collapse
|