1
|
Du LQ, Yang Y, Ruan L, Sun S, Mo DY, Cai JY, Liang H, Shu S, Qin QP. Insights into the antineoplastic activity and mechanisms of action of coumarin-coordinated 8-hydroxyquinoline ruthenium(II/III) compounds. J Inorg Biochem 2024; 259:112659. [PMID: 38976937 DOI: 10.1016/j.jinorgbio.2024.112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Ruthenium(II/III) coordination compounds have gained widespread attention as chemotherapy drugs, photosensitizers, and photodynamic therapy reagents. Herein, a family of 11 novel coumarin-coordinated 8-hydroxyquinoline ruthenium(II/III) compounds, i.e., [RuII2(μ2-Cl)2(QL1a)2(DMSO)4] (YNU-4a = Yulin Normal University-4a), [RuII2(μ2-Cl)2(QL1b)2(DMSO)4] (YNU-4b), [RuII2(μ2-Cl)2(QL1c)2(DMSO)4] (YNU-4c), [RuII2(μ2-Cl)2(QL1d)2(DMSO)4]⋅2CH3OH (YNU-4d), [RuII(QL1e)2(DMSO)2] (YNU-4e), [RuIII(QL1e)2(QL3a)] (YNU-4f), [RuIII(QL1e)2(QL3b)] (YNU-4g), [RuIII(QL1e)2(QL3c)] (YNU-4h), [RuIICl2(H-QL3a)2(DMSO)2] (YNU-4i), [RuIICl2(H-QL3b)2(DMSO)2] (YNU-4j), and [RuIICl2(H-QL3c)2(DMSO)2] (YNU-4k), featuring the coligands 5,7-diiodo-8-hydroxyquinoline (H-QL1a), 5,7-dichloro-8-quinolinol (H-QL1b), 5-chloro-7-iodo-8-hydroxyquinolin (H-QL1c), 5,7-dibromo-8-hydroxyquinoline (H-QL1d), and 5,7-dichloro-8-hydroxy-2-methylquinoline (H-QL1e) and the main ligands 6,7-dichloro-3-pyridin-2-yl-chromen-2-one (H-QL3a), 6-bromo-3-pyridin-2-yl-chromen-2-one (H-QL3b), and 6-chloro-3-pyridin-2-yl-chromen-2-one (H-QL3c), respectively. The structure of compounds YNU-4a-YNU-4k was fully confirmed by conducting various spectroscopic analyses. The anticancer activity of YNU-4a-YNU-4k was evaluated in cisplatin-resistant A549/DDP lung cancer cells (LC549) versus normal embryonic kidney (HEK293) cells. Notably, compound YNU-4f bearing QL1e and QL3a ligands showed a more pronounced antiproliferative effect against LC549 cells (IC50 = 1.75 ± 0.09 μM) with high intrinsic selectivity toward LC549 cancer cells than YNU-4a-YNU-4e, H-QL1a-H-QL1e, cisplatin (PDD), YNU-4g-YNU-4k, and H-QL3a-H-QL3c. Additionally, a colocalization assay analysis of YNU-4e and YNU-4f showed that these two ruthenium(II/III) compounds were subcellularly accumulated in the mitochondria and other regions of the cytoplasm, where they induce mitophagy, adenosine triphosphate (ATP) reduction, mitochondrial respiratory chain complex I/IV(RC1/RC4) inhibition, and mitochondrial dysfunction. Accordingly, compounds YNU-4a-YNU-4k can be regarded as mitophagy inductors for the eradication of cisplatin-resistant LC549 cancer cells.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Yan Yang
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China; School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China
| | - Li Ruan
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Song Sun
- School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China
| | - Dong-Yin Mo
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Jin-Yuan Cai
- School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Sai Shu
- School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China
| | - Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| |
Collapse
|
2
|
Li Y, Liu B, Zheng Y, Hu M, Liu LY, Li CR, Zhang W, Lai YX, Mao ZW. Photoinduction of Ferroptosis and cGAS-STING Activation by a H 2S-Responsive Iridium(III) Complex for Cancer-Specific Therapy. J Med Chem 2024; 67:16235-16247. [PMID: 39250558 DOI: 10.1021/acs.jmedchem.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Triggering ferroptosis represents a promising anticancer therapeutic strategy, but the development of a selective ferroptosis inducer for cancer-specific therapy remains a great challenge. Herein, a H2S-responsive iridium(III) complex NA-Ir has been well-designed as a ferroptosis inducer. NA-Ir could selectively light up H2S-rich cancer cells, primarily localize in mitochondria, intercalate into mitochondrial DNA (mtDNA), and induce mtDNA damage, exhibiting higher anticancer activity under light irradiation. Mechanistic studies showed that NA-Ir-mediated PDT triggered lipid peroxidation and glutathione peroxidase 4 downregulation through ROS production and GSH depletion, resulting in ferroptosis through multiple pathways. Moreover, the intense mtDNA damage can activate the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway, leading to ferritinophagy and further ferroptosis. RNA-sequencing analysis showed that NA-Ir-mediated PDT mainly affects the expression of genes related to ferroptosis, autophagy, and cancer immunity. This study demonstrates the first cancer-specific example with ferroptosis and cGAS-STING activation, which provides a new strategy for multimodal synergistic therapy.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Ben Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Meng Hu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Cai-Rong Li
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yu-Xiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
3
|
Aguilar Rico F, Derogar M, Cubo L, Quiroga AG. Synthetic routes and chemical structural analysis for guiding the strategies on new Pt(II) metallodrug design. Dalton Trans 2024; 53:14949-14960. [PMID: 39177496 DOI: 10.1039/d4dt00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Metals in medicine is a distinct and mature field of investigation. Its progress in recent times cannot be denied, as it provides opportunities to advance our knowledge of the properties, speciation, reactivity and biological effects of metals in a medicinal context. The development of novel Pt(II) compounds to combat cancer continues to make valuable contributions but it has not yet achieved a complete cure. The chemistry of this field is basic for drug design improvements and our analysis of the chemical procedures is a practical tool for achieving effective Pt(II) anticancer drugs. We present chemical approaches in a manner that can be used to strategically plot new synthetic routes choosing right pathways. Clarifying the chemical challenge will help the scientific community to be aware of the ease and/or difficulty of the procedure before and after further studies, such as speciation, reactivity and biological action which are also very arduous and costly. The work provides information to tackle many challenges in chemistry, combining the knowledge on the Pt(II) reagent preparation together with the reactivity of the biological units used in the Pt(II) drug design. We discuss and include the description of the chemical reactions, the importance of multiple steps and the right order of such reactions to achieve the final drugs, analyzing the coordination principles as well as the organic and organometallic basis. This thorough study of the routes helps to detect the simpler or more complicated reactivity and will serve to improve the synthesis performance with possible post-modifications.
Collapse
Affiliation(s)
- Francisco Aguilar Rico
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Maryam Derogar
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Leticia Cubo
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Adoracion G Quiroga
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- IadChem, Institute for Advance Research in Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
4
|
Atrián-Blasco E, Sáez J, Rodriguez-Yoldi MJ, Cerrada E. Heteronuclear Complexes with Promising Anticancer Activity against Colon Cancer. Biomedicines 2024; 12:1763. [PMID: 39200227 PMCID: PMC11351612 DOI: 10.3390/biomedicines12081763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigates the activity of novel gold(I) and copper(I)/zinc(II) heteronuclear complexes against colon cancer. The synthesised heteronuclear Au(I)-Cu(I) and Au(I)-Zn(II) complexes were characterised and evaluated for their anticancer activity using human colon cancer cell lines (Caco-2). The complexes exhibited potent cytotoxicity, with IC50 values in the low micromolar range, and effectively induced apoptosis in cancer cells. In the case of complex [Cu{Au(Spy)(PTA)}2]PF6 (2), its cytotoxicity is ×10 higher than its mononuclear precursor, while showing low cytotoxicity towards differentiated healthy cells. Mechanistic studies revealed that complex 2 inhibits the activity of thioredoxin reductase, a key enzyme involved in redox regulation, leading to an increase in reactive oxygen species (ROS) levels and oxidative stress, in addition to an alteration in DNA's tertiary structure. Furthermore, the complexes demonstrated a strong binding affinity to bovine serum albumin (BSA), suggesting the potential for effective drug delivery and bioavailability. Collectively, these findings highlight the potential of the investigated heteronuclear Au(I)-Cu(I) and Au(I)-Zn(II) complexes as promising anticancer agents, particularly against colon cancer, through their ability to disrupt redox homeostasis and induce oxidative stress-mediated cell death.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea—ISQCH, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, 50009 Zaragoza, Spain (J.S.)
| | - Javier Sáez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea—ISQCH, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, 50009 Zaragoza, Spain (J.S.)
| | - Maria Jesús Rodriguez-Yoldi
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Facultad de Veterinaria, Ciber de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea—ISQCH, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, 50009 Zaragoza, Spain (J.S.)
| |
Collapse
|
5
|
Li HM, Wang MM, Su Y, Fang HB, Su Z. Mitochondria-Targeting Metallodrugs for Cancer Therapy: Perspectives from Cell Death Modes. ChemMedChem 2024; 19:e202400120. [PMID: 38696276 DOI: 10.1002/cmdc.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Mitochondria, recognized as the cellular powerhouses, are indispensable organelles responsible for crucial cellular processes, such as energy metabolism, material synthesis, and signaling transduction. Their intricate involvement in a broad spectrum of diseases, particularly cancer, has propelled the exploration of mitochondria-targeting treatment as a promising strategy for cancer therapy. Since the groundbreaking discovery of cisplatin, the trajectory of research on the development of metal complexes have been marked by continuous advancement, giving rise to a diverse array of metallodrugs characterized by variations in ligand types, metal center properties, and oxidation states. By specifically targeting mitochondria, these metallodrugs exhibit the remarkable ability to elicit various programmed cell death pathways, encompassing apoptosis, autophagy, and ferroptosis. This review primarily focuses on recent developments in transition metal-based mitochondria-targeting agents, offering a comprehensive exploration of their capacity to induce distinct cell death modes. The aim is not only to disseminate knowledge but also to stimulate an active field of research toward new clinical applications and novel anticancer mechanisms.
Collapse
Affiliation(s)
- Hao-Ming Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, P. R. China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Hong-Bao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Liang CJ, Wu RC, Huang XQ, Qin QP, Liang H, Tan MX. Synthesis and anticancer mechanisms of four novel platinum(II) 4'-substituted-2,2':6',2''-terpyridine complexes. Dalton Trans 2024; 53:2143-2152. [PMID: 38189098 DOI: 10.1039/d3dt03197g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitophagy, a selective autophagic process, has emerged as a pathway involved in degrading dysfunctional mitochondria. Herein, new platinum(II)-based chemotherapeutics with mitophagy-targeting properties are proposed. Four novel binuclear anticancer Pt(II) complexes with 4'-substituted-2,2':6',2''-terpyridine derivatives (tpy1-tpy4), i.e., [Pt2(tpy1)(DMSO)2Cl4]·CH3OH (tpy1Pt), [Pt(tpy2)Cl][Pt(DMSO)Cl3]·CH3COCH3 (tpy2Pt), [Pt(tpy3)Cl][Pt(DMSO)Cl3] (tpy3Pt), and [Pt(tpy4)Cl]Cl·CH3OH (tpy4Pt), were designed and prepared. Moreover, their potential antitumor mechanism was studied. Tpy1Pt-tpy4Pt exhibited more selective cytotoxicity against cisplatin-resistant SK-OV-3/DDP (SKO3cisR) cancer cells compared with those against ovarian SK-OV-3 (SKO3) cancer cells and normal HL-7702 liver (H702) cells. This selective cytotoxicity of Tpy1Pt-tpy4Pt was better than that of its ligands (i.e., tpy1-tpy4), the clinical drug cisplatin, and cis-Pt(DMSO)2Cl2. The results of various experiments indicated that tpy1Pt and tpy2Pt kill SKO3cisR cancer cells via a mitophagy pathway, which involves the disruption of the mitophagy-related protein expression, dissipation of the mitochondrial membrane potential, elevation of the [Ca2+] and reactive oxygen species levels, promotion of mitochondrial DNA damage, and reduction in the adenosine triphosphate and mitochondrial respiratory chain levels. Furthermore, in vivo experiments indicated that the dinuclear anticancer Pt(II) coordination compound (tpy1Pt) has remarkable therapeutic efficiency (ca. 52.4%) and almost no toxicity. Therefore, the new 4'-substituted-2,2':6',2''-terpyridine Pt(II) coordination compound (tpy1Pt) is a potential candidate for next-generation mitophagy-targeting dinuclear Pt(II)-based anticancer drugs.
Collapse
Affiliation(s)
- Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
7
|
Hu W, Liu R, Zheng K, Wang Z. Highly photoactive Ir(III)-Pt(IV) heterometallic conjugates for anticancer therapy. Chem Commun (Camb) 2024; 60:388-391. [PMID: 38054250 DOI: 10.1039/d3cc04938h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
For the first time, this study reported the photoactivatable activity of Ir(III)-Pt(IV) heterometallic conjugates, which were stable in the dark and activated to release oxaliplatin and Ir within 3 min of irradiation. The conjugates induced apoptosis and immunologic cell death through Pt-DNA binding and reactive oxygen species generation upon irradiation. This work developed photoactivatable heterometallic agents for anticancer therapy.
Collapse
Affiliation(s)
- Wangman Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Rongzhi Liu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Kai Zheng
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Zhigang Wang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
8
|
Chen Y, Ke Z, Yuan L, Liang M, Zhang S. Hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline complexes as potential anticancer agents: synthesis, characterization and anticancer evaluation. Dalton Trans 2023; 52:12318-12331. [PMID: 37591821 DOI: 10.1039/d3dt01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We synthesized and analyzed nine unique copper(II) hydrazylpyridine salicylaldehyde and 1,10-phenanthroline complexes, [Cu(L1a)(phen)] (Cugdupt1), [Cu(L2a)(phen)]·(CH3CN) (Cugdupt2), [Cu(L3a)(phen)] (Cugdupt3), [Cu(L4a)(phen)]·(CH3CN) (Cugdupt4), [Cu(L5a)(phen)] (Cugdupt5), [Cu(L6a)(phen)] (Cugdupt6), [Cu(L7a)(phen)] (Cugdupt7) [Cu(L8a)(phen)] (Cugdupt8) and [Cu(L9a)(phen)]·0.5(H2O) (Cugdupt9). We were motivated by the intriguing properties of the coupled ligands of hydrazylpyridine, salicylaldehyde, and 1,10-phenanthroline. The MTT assay demonstrated that Cugdupt1-Cugdupt9 have higher anticancer activity than L1H2-L9H2, phen and cisplatin on A549/DDP cancer cells (A549cis). Cugdupt1-Cugdupt9 were superior to cisplatin with IC50 values of 1.6-100.0 fold on A549cis cells (IC50(Cugdupt1-Cugdupt9) = 0.5-30.5 μM, IC50(cisplatin) = 61.5 ± 1.0 μM). However, Cugdupt1-Cugdupt9 had lower cytotoxicity toward the HL-7702 normal cells. Cugdupt1 and Cugdupt8 can induce reduction of mitochondrial respiratory chain complexes I/IV (MRCC-I/IV), mitophagy pathways, and eventually protein regulation and adenosine triphosphate (ATP) depletion in A549cis cells. The findings indicated that Cugdupt1 and Cugdupt8 caused cell death via both ATP diminution and mitophagy pathways. Finally, Cugdupt8 demonstrated high efficacy and no obvious cytotoxicity in A549 tumor-bearing mice. This study thus helps evaluate the potential of the hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline compounds for cisplatin-resistant tumor therapy.
Collapse
Affiliation(s)
- Yating Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Zhilin Ke
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Lingyu Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Meixiang Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Shuhua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| |
Collapse
|
9
|
Gao WJ, Wang MM, Su Y, Yu ZH, Liu HK, Su Z. Self-Assembly Mitochondria-Targeting Donor-Acceptor Type Theranostic Nanosphere Activates ROS Storm for Multimodal Cancer Therapy. ACS APPLIED BIO MATERIALS 2023; 6:722-732. [PMID: 36626248 DOI: 10.1021/acsabm.2c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The rational design of cancer theranostics with natural diagnostic information and therapeutic behavior has been considered to be a big challenge, since common theranostics from photothermal and photodynamic therapy need to be activated with external stimuli of photoirradiation to enable the chemotherapeutic effects. In this contribution, we have designed and synthesized a series of simple theranostic agents, TPA-N-n (n = 4, 8, 12), which could accumulate at the tumor site over 48 h and indicate superior antiproliferative performance in vivo. TPA-N-n was constructed with electron donor triphenylamine-acceptor benzothiadiazole-mitochondria-targeting moiety pyridinium. Complex TPA-N-8 indicated the best cytotoxicity to cancerous HeLa cells, with an IC50 value of 4.3 μM, and could self-assemble to a nanosphere with a size of 161.2 nm in the DMSO/PBS solution. It is worth noting that TPA-N-8 could accumulate in the mitochondria and produce major ROS species O2•- and OH• as well as small amounts of 1O2 without photoirradiation. Oxidative DNA damage is initiated due to the imbalance of intracellular redox homeostasis from the significant ROS storm. Multimodal synergistic therapy for HeLa cells was activated, as the PINK1-mediated mitophagy from the damaged mitochondria and DNA damage responsive (DDR) induced necroptosis and autophagy. This work not only provided a successful D-A type theranostic agent with superior anticancer performance from multimodal synergistic therapy but also further demonstrated the high efficacy of a mitochondria-targeting strategy for cancer treatment.
Collapse
Affiliation(s)
- Wen-Juan Gao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
10
|
Ma L, Wang Y, Wang X, Zhu Q, Wang Y, Li L, Cheng HB, Zhang J, Liang XJ. Transition metal complex-based smart AIEgens explored for cancer diagnosis and theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Zhou Z, Du LQ, Huang XM, Zhu LG, Wei QC, Qin QP, Bian H. Novel glycosylation zinc(II)-cryptolepine complexes perturb mitophagy pathways and trigger cancer cell apoptosis and autophagy in SK-OV-3/DDP cells. Eur J Med Chem 2022; 243:114743. [PMID: 36116236 DOI: 10.1016/j.ejmech.2022.114743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/04/2022]
Abstract
With the aim of shedding some light on the mechanism of action of zinc(II) complexes in antiproliferative processes and molecular signaling pathways, three novel glycosylated zinc(II)-cryptolepine complexes, i.e., [Zn(QA1)Cl2] (Zn(QA1)), [Zn(QA2)Cl2] (Zn(QA2)), and [Zn(QA3)Cl2] (Zn(QA3)), were prepared by conjugating a glucose moiety with cryptolepine, followed by complexation of the resulting glycosylated cryptolepine compounds N-((1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)methyl)-benzofuro[3,2-b]quinolin-11-amine (QA1), 2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)methyl)-1H-1,2,3-triazol-1-yl)ethan-1-ol (QA2), and (2S,3S,4R,5R,6S)-2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)-methyl)-1H-1,2,3-triazol-1-yl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (QA3) with zinc(II), and their anticancer activity was evaluated. In MTT assays, Zn(QA1)-Zn(QA3) were more active against cisplatin-resistant ovarian SK-OV-3/DDP cancer cells (SK-OV-3cis) than ZnCl2 and the QA1-QA3 ligands, with IC50 values of 1.81 ± 0.50, 2.92 ± 0.32, and 1.01 ± 0.11 μM, respectively. Complexation of glycosylated cryptolepine QA3 with zinc(II) increased the antiproliferative activity of the ligand, suggesting that Zn(QA3) could act as a chaperone to deliver the active ligand intracellularly, in contrast with other cryptolepine metal complexes previously reported. In vivo and in vitro investigations suggested that Zn(QA3) exhibited enhanced anticancer activity with treatment effects comparable to those of the clinical drug cisplatin. Furthermore, Zn(QA1)-Zn(QA3) triggered SK-OV-3cis cell apoptosis through mitophagy pathways in the order Zn(QA1) > Zn(QA1) > Zn(QA2). These results demonstrate the potential of glycosylated zinc(II)-cryptolepine complexes for the development of chemotherapy drugs against cisplatin-resistant SK-OV-3cis cells.
Collapse
Affiliation(s)
- Zhen Zhou
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Li-Gang Zhu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Qiao-Chang Wei
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Hedong Bian
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China.
| |
Collapse
|
12
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
13
|
Wang MM, Xu FJ, Su Y, Geng Y, Qian XT, Xue XL, Kong YQ, Yu ZH, Liu HK, Su Z. A New Strategy to Fight Metallodrug Resistance: Mitochondria-Relevant Treatment through Mitophagy to Inhibit Metabolic Adaptations of Cancer Cells. Angew Chem Int Ed Engl 2022; 61:e202203843. [PMID: 35384194 DOI: 10.1002/anie.202203843] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Metabolic adaptations can help cancer cells to escape from chemotherapeutics, mainly involving autophagy and ATP production. Herein, we report a new rhein-based cyclometalated IrIII complex, Ir-Rhein, that can accurately target mitochondria and effectively inhibit metabolic adaptations. The complex Ir-Rhein induces severe mitochondrial damage and initiates mitophagy to reduce the number of mitochondria and subsequently inhibit both mitochondrial and glycolytic bioenergetics, which eventually leads to ATP starvation death. Moreover, Ir-Rhein can overcome cisplatin resistance. Co-incubation experiment, 3D tumor spheroids experiment and transcriptome analysis reveal that Ir-Rhein shows promising antiproliferation performance for cisplatin-resistant cancer cells with the regulation of platinum resistance-related transporters. To our knowledge, this is a new strategy to overcome metallodrug resistance with a mitochondria-relevant treatment.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fu-Jie Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.,Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiao-Ting Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xu-Ling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ya-Qiong Kong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
14
|
Wang MM, Li HM, Deng DP, Su Y, Su Z. Anticancer performance of Ir(III)-based anticancer agents in the treatment of cisplatin resistant cancer cells. ChemMedChem 2022; 17:e202200273. [PMID: 35726053 DOI: 10.1002/cmdc.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Indexed: 11/07/2022]
Abstract
The resistance to cisplatin of cancer cells have dramatically blocked its further application in the practical treatment. The generation of cisplatin resistance was a complicated physiological process, even several mechanisms have been reported. New metal-based agents with distinct anticancer mechanisms were still highly desired. In this concept, we have described Ir(III)-based anticancer agents and the underlying anticancer mechanisms, which could inhibit the antiproliferation of cisplatin resistant tumors. This work could benefit the society to develop more effective Ir(III)-based agents to combat cisplatin resistance.
Collapse
Affiliation(s)
| | | | | | - Yan Su
- Nanjing Normal University, Chemistry, CHINA
| | - Zhi Su
- Nanjing Normal University, Chemistry, Wenyuan Rd. #1, 210093, Nanjing, CHINA
| |
Collapse
|
15
|
Rational design of mitochondria targeted thiabendazole-based Ir(III) biscyclometalated complexes for a multimodal photodynamic therapy of cancer. J Inorg Biochem 2022; 231:111790. [DOI: 10.1016/j.jinorgbio.2022.111790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
|
16
|
Wang M, Xu F, Su Y, Geng Y, Qian X, Xue X, Kong Y, Yu Z, Liu H, Su Z. A New Strategy to Fight Metallodrug Resistance: Mitochondria‐Relevant Treatment through Mitophagy to Inhibit Metabolic Adaptations of Cancer Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meng‐Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Fu‐Jie Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
- Department of Rheumatology and Immunology Jinling Hospital Medical School of Nanjing University Nanjing 210002 China
| | - Yun Geng
- Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Xiao‐Ting Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Xu‐Ling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ya‐Qiong Kong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Zheng‐Hong Yu
- Department of Rheumatology and Immunology Jinling Hospital Medical School of Nanjing University Nanjing 210002 China
| | - Hong‐Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
17
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Novel bifluorescent Zn(II)–cryptolepine–cyclen complexes trigger apoptosis induced by nuclear and mitochondrial DNA damage in cisplatin-resistant lung tumor cells. Eur J Med Chem 2022; 238:114418. [DOI: 10.1016/j.ejmech.2022.114418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
|
19
|
Zheng J, Fan S, Liu S, Shen G, Si WD, Dong X, Huang X, Zhang Y, Yao Q, Li Z, Sun D. In situ ball-milling gram-scale preparation of polyoxoniobate-intercalated MgAl-layered double hydroxides for selective aldol and Michael addition cascade reactions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01167k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile one-step ball-milling strategy to prepare gram-scale Mg3Al-LDH-Nb6 has been demonstrated and the thus-obtained catalyst exhibited efficient selective catalytic activities in the synthesis of biologically active organic molecules in water.
Collapse
Affiliation(s)
- Jun Zheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Shuhua Fan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Sen Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Guodong Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Xinyi Dong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Yalin Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Qingxia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Zhen Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| |
Collapse
|
20
|
Wang ZF, Wei QC, Li JX, Zhou Z, Zhang S. A new class of nickel(II) oxyquinoline-bipyridine complexes as potent anticancer agents induces apoptosis and autophagy in A549/DDP tumor cells through mitophagy pathways. Dalton Trans 2022; 51:7154-7163. [DOI: 10.1039/d2dt00669c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of nickel(II) oxyquinoline-bipyridine complexes, namely, [Ni(La1)2(Lb6)] (Ni1), [Ni(La1)2(Lb2)] CH3OH (Ni2), [Ni(La7)2(Lb11)]2H2O (Ni3), [Ni(La1)2(Lb9)] (Ni4), [Ni(La1)2(Lb8)] (Ni5), [Ni(La2)2(Lb1)] (Ni6), [Ni(La2)2(Lb6)]CH3OH (Ni7), [Ni(La2)2(Lb11)]CH3OH (Ni8), [Ni(La2)2(Lb3)] (Ni9), [Ni(La2)2(Lb2)]CH3OH (Ni10), [Ni(La2)2(Lb5)]CH3OH...
Collapse
|
21
|
Ma L, Li L, Zhu G. Platinum-containing heterometallic complexes in cancer therapy: advances and perspectives. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00205a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based anticancer drugs are among the most widely used antineoplastics in clinical settings. Their therapeutic applications and outcomes are, however, greatly hampered by drug resistance, systemic toxicity, and the lack...
Collapse
|
22
|
Zafon E, Echevarría I, Barrabés S, Manzano BR, Jalón FA, Rodríguez AM, Massaguer A, Espino G. Photodynamic therapy with mitochondria-targeted biscyclometallated Ir(III) complexes. Multi-action mechanism and strong influence of the cyclometallating ligand. Dalton Trans 2021; 51:111-128. [PMID: 34873601 DOI: 10.1039/d1dt03080a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy is an alternative to classical chemotherapy due to its potential to reduce side effects by a controlled activation of a photosensitizer through local irradiation with light. The photosensitizer then interacts with oxygen and generates reactive oxygen species. Iridium biscyclometallated complexes are very promising photosensitizers due to their exceptional photophysical properties and their ability to target mitochondria. Four Ir(III) biscyclometallated complexes of formula [Ir(C^N)2(N^N')]Cl, where N^N' is a ligand containing a benzimidazolyl fragment, have been synthesized and characterized. The C^N ligands were 2-phenylpyridinate (ppy) and 2-(2,4-difluorophenyl)pyridinate (dfppy). The complexes exhibited high photostability. The electrochemical and photophysical properties were modulated by both the cyclometallating and the ancillary ligands. The dfppy derivatives yielded the highest emission energy values, quantum yields of phosphorescence and excited state lifetimes. All complexes generated 1O2 in aerated solutions upon irradiation. Biological studies revealed that these complexes have a moderate cytotoxicity in the dark against different human cancer cell lines: prostate (PC-3), colon (CACO-2) and melanoma (SK-MEL-28), and against non-malignant fibroblasts (CCD-18Co). However, derivatives with ppy ligands ([1a]Cl, [2a]Cl) yielded a relevant photodynamic activity upon light irradiation (450 nm, 24.1 J cm-2), with phototoxicity indexes (EC50,dark/EC50,light) of 20.8 and 17.3, respectively, achieved in PC-3 cells. Mechanistic studies showed that these complexes are taken up by the cells through endocytosis and preferentially accumulate in mitochondria. Upon photoactivation, the complexes induced mitochondrial membrane depolarization and DNA damage, thus triggering cell death, mainly by apoptosis. Complex [1a]Cl is also able to oxidize NADH. This mitochondria-targeted photodynamic mechanism greatly inhibited the reproductive capacity of cancer cells and provides a valuable alternative to traditional chemotherapy for the controlled treatment of cancer.
Collapse
Affiliation(s)
- Elisenda Zafon
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Igor Echevarría
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Sílvia Barrabés
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Félix A Jalón
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica. Escuela Técnica Superior de Ingenieros Industriales de Ciudad Real, Avda. Camilo J. Cela, 2, 13071 Ciudad Real, Spain
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Gustavo Espino
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
23
|
Das U, Kar B, Pete S, Paira P. Ru(ii), Ir(iii), Re(i) and Rh(iii) based complexes as next generation anticancer metallopharmaceuticals. Dalton Trans 2021; 50:11259-11290. [PMID: 34342316 DOI: 10.1039/d1dt01326b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several anticancer drugs such as cisplatin, and its analogues, epirubicin, and doxorubicin are well known for their anticancer activity but the therapeutic value of these drugs comes with certain side effects and they cannot distinguish between normal and cancer cells. Thus, a major challenge for researchers around the world is to develop an anticancer drug with the least toxicity and more target specificity. With the successful reporting of NAMI-A and KP1019, a new path has emerged in the anticancer field. Recently, several Ru(ii) complexes have been reported for their anticancer activity due to their enhanced cellular uptake and selectivity towards cancer cells. Apart from the Ru(ii) complexes, a large amount of research has been carried out with Ir(iii), Re(i), and Rh(iii) based complexes, which exhibited promising anticancer activity. The present review reports various Ru(ii), Ir(iii), Re(i), and Rh(iii) based complexes for their anticancer activity based on their cytotoxicity profiles, biological targets and mechanism of action.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | | | | | | |
Collapse
|
24
|
Xiong K, Zhou Y, Karges J, Du K, Shen J, Lin M, Wei F, Kou J, Chen Y, Ji L, Chao H. Autophagy-Dependent Apoptosis Induced by Apoferritin-Cu(II) Nanoparticles in Multidrug-Resistant Colon Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38959-38968. [PMID: 34379404 DOI: 10.1021/acsami.1c07223] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy continues to be the most commonly applied strategy for cancer. Despite the impressive clinical success obtained with several drugs, increasing numbers of (multi)drug-resistant tumors are reported. To overcome this shortcoming, novel drug candidates and delivery systems are urgently needed. Herein, a therapeutic copper polypyridine complex encapsulated in natural nanocarrier apoferritin is reported. The generated nanoparticles showed higher cytotoxicity toward various (drug-resistant) cancer cell lines than noncancerous cells. The study of the mechanism revealed that the compound triggers cell autophagy-dependent apoptosis. Promisingly, upon injection of the nanodrug conjugate into the bloodstream of a mouse model bearing a multidrug-resistant colon tumor, a strong tumor growth inhibition effect was observed. To date, this is the first study describing the encapsulation of a copper complex in apoferritin that acts by autophagy-dependent apoptosis.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ying Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Kejie Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Mingwei Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Junfeng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
25
|
A highly potent ruthenium(II)-sonosensitizer and sonocatalyst for in vivo sonotherapy. Nat Commun 2021; 12:5001. [PMID: 34408151 PMCID: PMC8373944 DOI: 10.1038/s41467-021-25303-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
As a basic structure of most polypyridinal metal complexes, [Ru(bpy)3]2+, has the advantages of simple structure, facile synthesis and high yield, which has great potential for scientific research and application. However, sonodynamic therapy (SDT) performance of [Ru(bpy)3]2+ has not been investigated so far. SDT can overcome the tissue-penetration and phototoxicity problems compared to photodynamic therapy. Here, we report that [Ru(bpy)3]2+ is a highly potent sonosensitizer and sonocatalyst for sonotherapy in vitro and in vivo. [Ru(bpy)3]2+ can produce singlet oxygen (1O2) and sono-oxidize endogenous 1,4-dihydronicotinamide adenine dinucleotide (NADH) under ultrasound (US) stimulation in cancer cells. Furthermore, [Ru(bpy)3]2+ enables effective destruction of mice tumors, and the therapeutic effect can reach deep tissues over 10 cm under US irradiation. This work paves a way for polypyridinal metal complexes to be applied to the noninvasive precise sonotherapy of cancer. Sonodynamic therapy has therapeutic promise due to its safety and good tissue penetration, but is currently bottlenecked due to a lack of efficient and safe sonosensitizers. Here the authors show that [Ru(bpy)3]2+ can produce singlet oxygen and sonooxidize NADH in deep tissue, and destroy mouse tumors effectively.
Collapse
|
26
|
Krasnovskaya O, Spector D, Erofeev A, Gorelkin P, Akasov R, Skvortsov D, Trigub A, Vlasova K, Semkina A, Zyk N, Beloglazkina E, Majouga A. Alternative mechanism of action of the DNP Pt IV prodrug: intracellular cisplatin release and the mitochondria-mediated apoptotic pathway. Dalton Trans 2021; 50:7922-7927. [PMID: 34037020 DOI: 10.1039/d1dt00898f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In a recent research paper Dr. Suxing Jin et al. reported two multispecific PtIV complexes DNP and NP with non-steroidal anti-inflammatory drug naproxen (NPX) as the axial ligand(s). Herein, we clarify the mechanism of action of DNP, its therapeutic target and intracellular redox-status.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Roman Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russia and Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow, 119333, Russia
| | - Dmitry Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and Faculty of biology and biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow, 101000, Russia
| | - Alexander Trigub
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, Moscow, 123182, Russia
| | - Ksenia Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia.
| | - Alevtina Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov str. 1, Moscow, 117997, Russia and Serbsky National Medical Research Center for Psychiatry and Narcology, Department of Basic and Applied Neurobiology, Kropotkinskiy 23, Moscow 119991, Russia
| | - Nikolay Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia.
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia.
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia and Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad' 9, Moscow, 125047, Russia
| |
Collapse
|
27
|
Berrones Reyes J, Kuimova MK, Vilar R. Metal complexes as optical probes for DNA sensing and imaging. Curr Opin Chem Biol 2021; 61:179-190. [PMID: 33784589 DOI: 10.1016/j.cbpa.2021.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Transition and lanthanide metal complexes have rich photophysical properties that can be used for cellular imaging, biosensing and phototherapy. One of the applications of such luminescent compounds is the detection and visualisation of nucleic acids. In this brief review, we survey the recent literature on the use of luminescent metal complexes (including ReI, RuII, OsII, IrIII, PtII, EuIII and TbIII) as DNA optical probes, including examples of compounds that bind selectively to non-duplex DNA topologies such as quadruplex, i-motif and DNA mismatches. We discuss the applications of metal-based luminescent complexes in cellular imaging, including time-resolved microscopy and super-resolution techniques. Their applications in biosensing and phototherapy are briefly mentioned in the relevant sections.
Collapse
Affiliation(s)
- Jessica Berrones Reyes
- Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
28
|
Monofunctional Platinum(II) Anticancer Agents. Pharmaceuticals (Basel) 2021; 14:ph14020133. [PMID: 33562293 PMCID: PMC7915149 DOI: 10.3390/ph14020133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Platinum-based anticancer drugs represented by cisplatin play important roles in the treatment of various solid tumors. However, their applications are largely compromised by drug resistance and side effects. Much effort has been made to circumvent the drug resistance and general toxicity of these drugs. Among multifarious designs, monofunctional platinum(II) complexes with a general formula of [Pt(3A)Cl]+ (A: Ammonia or amine) stand out as a class of "non-traditional" anticancer agents hopeful to overcome the defects of current platinum drugs. This review aims to summarize the development of monofunctional platinum(II) complexes in recent years. They are classified into four categories: fluorescent complexes, photoactive complexes, targeted complexes, and miscellaneous complexes. The intention behind the designs is either to visualize the cellular distribution, or to reduce the side effects, or to improve the tumor selectivity, or inhibit the cancer cells through non-DNA targets. The information provided by this review may inspire researchers to conceive more innovative complexes with potent efficacy to shake off the drawbacks of platinum anticancer drugs.
Collapse
|
29
|
Guan R, Xie L, Wang L, Zhou Y, Chen Y, Ji L, Chao H. Necroptosis-inducing iridium(iii) complexes as regulators of cyclin-dependent kinases. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01430c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondria-targeted Ir(iii) complexes induce necroptosis and downregulate certain cell cycle proteins to achieve cell cycle arrest and an anti-proliferation effect in drug-resistant lung cancer.
Collapse
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P R China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P R China
| | - Lili Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P R China
| | - Ying Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P R China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P R China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P R China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P R China
| |
Collapse
|
30
|
Xu J, Su L, Han J, Gao K, Zhang M, Wang S, Chen C, Yan X. Rapid and quantitative in vitro analysis of mitochondrial fusion and its interplay with apoptosis. Talanta 2021; 222:121523. [DOI: 10.1016/j.talanta.2020.121523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/03/2023]
|
31
|
Bravo-Cuellar A, Ortiz-Lazareno PC, Sierra-Díaz E, Solorzano-Ibarra F, Méndez-Clemente AS, Aguilar-Lemarroy A, Jave-Suárez LF, Ruiz Velazco-Niño É, Hernández-Flores G. Pentoxifylline Sensitizes Cisplatin-Resistant Human Cervical Cancer Cells to Cisplatin Treatment: Involvement of Mitochondrial and NF-Kappa B Pathways. Front Oncol 2020; 10:592706. [PMID: 33680921 PMCID: PMC7931705 DOI: 10.3389/fonc.2020.592706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer continues to be a major public health problem worldwide, and Cisplatin is used as first-line chemotherapy for this cancer; however, malignant cells exposed to CISplatin (CIS) become insensitive to the effects of this drug. PenToXifylline (PTX) is a xanthine that sensitizes several types of tumor cells to apoptosis induced by antitumor drugs, such as Adriamycin, Carboplatin, and CIS. The effects of PTX on tumor cells have been related to the disruption of the NF-κB pathway, thus preventing the activation of cell survival mechanisms such as the expression of anti-apoptotic genes, the secretion of proinflammatory interleukins, and growth factors. Objective In this work, we studied the antitumor proprieties of PTX in human SiHa cervical carcinoma cells resistant to CIS. Materials and Methods SiHa and HeLa cervical cancer cells and their CIS-resistant derived cell lines (SiHaCIS-R and HeLaCIS-R, respectively) were used as in-vitro models. We studied the effects of PTX alone or in combination with CIS on cell viability, apoptosis, caspase-3, caspase-8, and caspase-9 activity, cleaved PARP-1, anti-apoptotic protein (Bcl-2 and Bcl-xL) levels, p65 phosphorylation, cadmium chloride (CdCl2) sensitivity, Platinum (Pt) accumulation, and glutathione (GSH) levels, as well as on the gene expression of GSH and drug transporters (influx and efflux). Results PTX sensitized SiHaCIS-R cells to the effects of CIS by inducing apoptosis, caspase activation, and PARP-1 cleavage. PTX treatment also decreased p65 phosphorylation, increased Pt levels, depleted GSH, and downregulated the expression of the ATP7A, ATP7B, GSR, and MGST1 genes. Conclusion PTX reverses the acquired phenotype of CIS resistance close to the sensitivity of parental SiHa cells.
Collapse
Affiliation(s)
- Alejandro Bravo-Cuellar
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico.,Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Erick Sierra-Díaz
- Departamento de Urología, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Fabiola Solorzano-Ibarra
- Programa de Doctorado en Ciencias Biomédicas Orientación Inmunología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara, Mexico
| | - Anibal Samael Méndez-Clemente
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico.,Programa de Doctorado en Ciencias Biomédicas Orientación Inmunología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Édgar Ruiz Velazco-Niño
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Georgina Hernández-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| |
Collapse
|
32
|
Guan R, Xie L, Ji L, Chao H. Phosphorescent Iridium(III) Complexes for Anticancer Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology 400201 Xiangtan P. R. China
| |
Collapse
|
33
|
Ge C, Zhu J, Ouyang A, Lu N, Wang Y, Zhang Q, Zhang P. Near-infrared phosphorescent terpyridine osmium(ii) photosensitizer complexes for photodynamic and photooxidation therapy. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00846j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NIR phosphorescent terpyridine Os(ii) complexes can produce singlet oxygen and oxidize NADH under both blue and red light irradiation.
Collapse
Affiliation(s)
- Chen Ge
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Jiayi Zhu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Ai Ouyang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Nong Lu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yi Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|