1
|
Zhang ML, Cao XQ, Cao C, Zheng TF, Xie X, Wen HR, Liu SJ. Highly stable Tb(III) metal-organic framework derived from a new benzothiadiazole functionalized ligand for fluorescence recognition of ascorbic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124898. [PMID: 39116597 DOI: 10.1016/j.saa.2024.124898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Because ascorbic acid (AA) is one of the basic elements to maintain the normal physiological functions of human body, it is urgent to develop a material that can achieve efficient, rapid and in-situ detection for AA. A new fluorescence organic compound 4',4'''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1'-biphenyl]-4-carboxylic acid) (H2BTBC) based on benzothiadiazole group has been synthesized, which can detect Fe3+ ions by fluorescence turn-off effect with a detection limit of 0.015 μM, as well as recognize linear amines by fluorescence turn-on effect. Moreover, a highly stable Tb(III) metal-organic framework has been solvothermally prepared with H2BTBC, namely {[(CH3)2NH2]2[Tb2(BTBC)4]∙solvents}n (JXUST-39), which can selectively detect AA among biological fluids by fluorescence enhancement effect with a detection limit of 0.077 μM. In addition, the mechanism for JXUST-39 detecting AA is possibly the cooperative effect of absorbance-caused enhancement and charge transfer between JXUST-39 and AA. Moreover, LED lamp beads, fluorescent films and fluorescent detection test paper based on JXUST-39 were prepared to achieve portable detection via fluorescence enhancement effect.
Collapse
Affiliation(s)
- Man-Lian Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Xiao-Qin Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Chen Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Xin Xie
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
2
|
Zhang W, Zhao Y, Sun J, Peng D, Li X, Lv Y, Li J, Su Z. Fluorescent Sensors Based on Lanthanide-Based Metal-Organic Frameworks via Devices and pH Response. Inorg Chem 2024; 63:15527-15536. [PMID: 39105732 DOI: 10.1021/acs.inorgchem.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In light of the escalating industrial and environmental pollution, there is a pressing need for the development of novel materials capable of swiftly detecting pollutants. Here, we report the synthesis of five lanthanide metal-organic frameworks sharing a common structure, prepared via a hydrothermal method and denoted as [Ln2(H2DHBDC)2(phen)(H2O)6]n (where CUST-888 corresponds to Tb, CUST-889 corresponds to Eu, CUST-890 corresponds to Gd, CUST-891 corresponds to Dy, and CUST-892 corresponds to Nd). Notably, CUST-888 and CUST-889 exhibit discernible visual alterations in response to acidic and alkaline conditions. To assess their practical utility, luminescent test strips and light-emitting diode lights based on CUST-888 and CUST-889 were devised, enabling the visual detection of luminescence color changes induced by Hg2+, Cr2O72-, tetracycline, and 2,4,6-trinitrophenol. Furthermore, highlighters derived from CUST-888 and CUST-889 were designed, showcasing robust stability, adjustable color, and substantial potential for application in the realm of anticounterfeiting.
Collapse
Affiliation(s)
- Wenxi Zhang
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yihe Zhao
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jing Sun
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Dianxiang Peng
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Xiao Li
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yanjie Lv
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jiao Li
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhongmin Su
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
3
|
Chen Y, Wang Z, Liang M, Liu Y, Dong W, Hu Q, Dong C, Gong X. High-efficient nickel-doped lignin carbon dots as a fluorescent and smartphone-assisted sensing platform for sequential detection of Cr(VI) and ascorbic acid. Int J Biol Macromol 2024; 274:133790. [PMID: 38992545 DOI: 10.1016/j.ijbiomac.2024.133790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Using lignin as a raw material to prepare fluorescent nanomaterials represents a significant pathway toward the high-value utilization of waste biomass. In this study, Ni-doped lignin carbon dots (Ni-LCDs) were rapidly synthesized with a yield of 63.22 % and a quantum yield of 8.25 % using a green and simple hydrothermal method. Exploiting the inner filter effect (IFE), Cr(VI) effectively quenched the fluorescence of the Ni-LCDs, while the potent reducing agent ascorbic acid (AA) restored the quenched fluorescence, thus establishing a highly sensitive fluorescence switch sensor platform for the sequential detection of Cr(VI) and AA. Importantly, the integration of a smartphone facilitated the portability of Cr(VI) and AA detection, enabling on-site, in-situ, and real-time monitoring. Ultimately, the developed fluorescence and smartphone-assisted sensing platform was successfully applied to detect Cr(VI) in actual water samples and AA in various fruits. This study not only presents an efficient method for the conversion and utilization of waste lignin but also broadens the application scope of the CDs in the field of smart sensors.
Collapse
Affiliation(s)
- Yihong Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zihan Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Meiqi Liang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Qin Hu
- College of Food Chemistry and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xiaojuan Gong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Huang F, Sun C, Dong J, Wu X, Du Y, Hu Q, Zhou L. Ultra-sensitive fluorescent biosensor for multiple bacteria detection based on CDs/QDs@ZIF-8 and microfluidic fluidized bed. Mikrochim Acta 2024; 191:237. [PMID: 38570419 DOI: 10.1007/s00604-024-06303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
An ultra-sensitive fluorescent biosensor based on CDs/QDs@ZIF-8 and microfluidic fluidized bed was developed for rapid and ultra-sensitive detection of multiple target bacteria. The zeolitic imidazolate frameworks (ZIF-8) act as the carrier to encapsulate three kinds of fluorescence signal molecules from the CDs/QDs@ZIF-8 signal amplification system. Besides, three kinds of target pathogenic bacteria were automatically, continuously, and circularly captured by the magnetic nanoparticles (MNPs) in the microfluidic fluidized bed. The neutral Na2EDTA solution was the first time reported to not only dissolve the ZIF-8 frameworks from the MNPs-bacteria-CDs/QDs@ZIF-8 sandwich complexes, but also release the CDs/QDs from sandwich complexes with no loss of fluorescence signal. Due to the advantages of signal amplification and automated sample pretreatment, the proposed fluorescent biosensor can simultaneously detect Escherichia coli O157:H7, Salmonella paratyphi A, and Salmonella paratyphi B as low as 101 CFU/mL within 1.5 h, respectively. The mean recovery in spiked milk samples can reach 99.18%, verifying the applicability of this biosensor in detecting multiple bacteria in real samples.
Collapse
Affiliation(s)
- Fengchun Huang
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Institute of Agro-Product Quality and Safety, of Quality Standard & Testing Technology for Agro-Products, Key Laboratory, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chongsi Sun
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Jinying Dong
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoya Wu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, People's Republic of China
| | - Qiushi Hu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, People's Republic of China.
| |
Collapse
|
5
|
Liu X, Sun C, Chai M, Song W. Highly dispersive PEI-modified CDs@ZIF-L dual-emitting fluorescent sensor for detecting metal ions. RSC Adv 2023; 13:31353-31364. [PMID: 37901263 PMCID: PMC10600832 DOI: 10.1039/d3ra04250b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
The leaf-like zeolitic imidazolate framework (ZIF-L) is a promising porous nanomaterial that has attracted increasing attention as an ideal host material to encapsulate functional fluorescent nanoparticles for designing fluorescent sensors. However, owing to the large particle size, gravity readily facilitates the precipitation of the ZIF-L from the aqueous solution, and thus lead to imperfect experimental results. Herein, we report a simple and rapid synthetic method which uses the polyethyleneimine (PEI)-modified ZIF-L as a host to solve the precipitation problem and construct a dual-emitting system that combines its fluorescence with carbon dots (CDs). Furthermore, CDs@ZIF-L/PEI with dual-emitting centres could be utilised as a ratio fluorescence sensor to detect Hg2+ ions. The sensor exhibited excellent dispersibility and good selectivity for sensing Hg2+ ions, with a limit of detection (LOD) of 14.5 nM. Furthermore, experimental results reveal that the CDs@ZIF-L/PEI fluorescent sensor could be effectively dispersed into agarose and less polar organic solvents such as DMF, MeOH, EtOH and CH3CN, expanding the application scope of the fluorescent sensor.
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Chemical Engineering, Qinghai University Xining 810016 P. R. China
| | - Chunyan Sun
- School of Chemical Engineering, Qinghai University Xining 810016 P. R. China
| | - Mingxia Chai
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University Xining 810016 P. R. China
| | - Weijun Song
- School of Chemical Engineering, Qinghai University Xining 810016 P. R. China
| |
Collapse
|
6
|
Liu X, Wang X, Sun C, Hu X, Song W. Brine available two-dimensional nano-architectonics of fluorescent probe based on phosphate doped ZIF-L for detection of Fe 3. Heliyon 2023; 9:e17884. [PMID: 37539111 PMCID: PMC10393607 DOI: 10.1016/j.heliyon.2023.e17884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Herein, we propose a simple and effective strategy for designing a zeolitic imidazolate frameworks (ZIFs) fluorescent probe with a two-dimensional leaf-like structure. By doping ZIF-L with phosphate, we developed a fluorescent probe for iron (Fe3+) in systems with high salinity. The fluorescence of P-ZIF-L was quenched effectively with the presence of Fe3+. The physicochemical structure, surface morphology, selectivity, stability and composition of the probe were investigated. Under optimized conditions, the fluorescent probe had a detection limit of 0.5 μM. Furthermore, the results that the probe exhibited desirable salt-tolerance and was suitable for determination of Fe3+ in brine water samples with satisfactory results.
Collapse
|
7
|
Xu X, Ma M, Sun T, Zhao X, Zhang L. Luminescent Guests Encapsulated in Metal-Organic Frameworks for Portable Fluorescence Sensor and Visual Detection Applications: A Review. BIOSENSORS 2023; 13:bios13040435. [PMID: 37185510 PMCID: PMC10136468 DOI: 10.3390/bios13040435] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic frameworks (MOFs) have excellent applicability in several fields and have significant structural advantages, due to their open pore structure, high porosity, large specific surface area, and easily modifiable and functionalized porous surface. In addition, a variety of luminescent guest (LG) species can be encapsulated in the pores of MOFs, giving MOFs a broader luminescent capability. The applications of a variety of LG@MOF sensors, constructed by doping MOFs with LGs such as lanthanide ions, carbon quantum dots, luminescent complexes, organic dyes, and metal nanoclusters, for fluorescence detection of various target analyses such as ions, biomarkers, pesticides, and preservatives are systematically introduced in this review. The development of these sensors for portable visual fluorescence sensing applications is then covered. Finally, the challenges that these sectors currently face, as well as the potential for future growth, are briefly discussed.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Muyao Ma
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Tongxin Sun
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Xin Zhao
- Ecology and Environmental Monitoring Center of Jilin Province, Changchun 130011, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| |
Collapse
|
8
|
Chen K, Zhu ZQ, Zhang MH, Yang X, Li J, Chen C, Redshaw C. 4,4′-Biphenyldisulfonic acid induced coordination polymers of symmetrical tetramethyl cucurbit[6]uril with alkaline-earth metals for detection of antibiotics. CrystEngComm 2023. [DOI: 10.1039/d2ce01470j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Three new 3D TMeQ[6]-based coordination polymers of alkali-earth metal ions (Ca2+, Sr2+ and Ba2+) were characterized, and one can highly selectively detect NFX (norfloxacin) molecules via a fluorescence quenching effect.
Collapse
Affiliation(s)
- Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Zhao-Qiang Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Ming-Hui Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Xiang Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Jie Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Chen Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
9
|
Barzegarzadeh M, Amini-Fazl MS, Nasrizadeh H. A rapid and sensitive method to detection of Cr3+by using the Fe3O4@Pectin-polymethacrylimide@graphene quantum dot as a sensitive material. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zhang S, Liu Y, Yu L, Wang H, Xu Y, Zhao Y. A highly selective and fast-response fluorescent sensor based on a composite material ZIF-8@MA for the detection of trace amounts of Fe3+ ion. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Li M, Gao Y, Yang W, Zhang C, Fang Y, Wang C, Song S, Pan Q. Dye-Encapsulated Lanthanide-Based Metal-Organic Frameworks as a Dual-Emission Sensitization Platform for Alachlor Sensing. Inorg Chem 2022; 61:9801-9807. [PMID: 35696705 DOI: 10.1021/acs.inorgchem.2c01332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As an important factor affecting global agricultural output, pesticides have a significant impact on the ecosystem. It is an urgent task to accurately and conveniently detect pesticide residues after their application. Herein, a fluorescent dye@MOF platform was designed via the encapsulation of rhodamine B (RhB) into the MOF structure (named RhB@HNU-48), which can significantly enhance the sensing sensitivity of alachlor with an ultralow detection limit of 0.59 ppb. The improved sensitivity of RhB@HNU-48 to pesticides was attributed to the host-guest interactions that affect the excitation and emission spectra of the composites. Based on the sensing capability of RhB@HNU-48, a logic gate was built to evaluate the safety level of alachlor residues in rivers and soil. The preparation of photofunctionalized MOF composites through modulation of host-guest interactions offers a promising strategy for the construction of desired sensors for agricultural residues.
Collapse
Affiliation(s)
- Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yan Gao
- College of Science, Hainan University, Haikou 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China.,College of Science, Hainan University, Haikou 570228, China
| | - Chaowei Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yu Fang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China.,College of Science, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Ning K, Sun Y, Liu J, Fu Y, Ye K, Liang J, Wu Y. Research Update of Emergent Sulfur Quantum Dots in Synthesis and Sensing/Bioimaging Applications. Molecules 2022; 27:2822. [PMID: 35566170 PMCID: PMC9100340 DOI: 10.3390/molecules27092822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Due to their unique optical property, low toxicity, high hydrophilicity, and low cost, sulfur quantum dots (SQDs), an emerging luminescent nanomaterial, have shown great potential in various application fields, such as sensing, bioimaging, light emitting diode, catalysis, and anti-bacteria. This minireview updates the synthetic methods and sensing/bioimaging applications of SQDs in the last few years, followed by discussion of the potential challenges and prospects in their synthesis and sensing/bioimaging applications, with the purpose to provide some useful information for researchers in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiangong Liang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; (K.N.); (Y.S.); (J.L.); (Y.F.); (K.Y.)
| | - Yuan Wu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; (K.N.); (Y.S.); (J.L.); (Y.F.); (K.Y.)
| |
Collapse
|
13
|
Yang W, Zheng X, Gao F, Li H, Fu B, Guo DY, Wang F, Pan Q. CdTe QDs@ZIF-8 composite-based recyclable ratiometric fluorescent sensor for rapid and sensitive detection of chlortetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120785. [PMID: 34972052 DOI: 10.1016/j.saa.2021.120785] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The residue problem in animal food products caused by the abuse of chlortetracycline (CTC) is one of the food safety issues that have attracted much attention. Herein, a composite was generated by embedding CdTe quantum dots (QDs) into ZIF-8 for ratiometric fluorescent analysis of CTC. With adding CTC, the green luminescence of CTC appeared under the sensitization effect of Zn2+ in ZIF-8, but the red luminescence of CdTe QDs was reduced by the inner filtration effect of CTC. On this basis, CTC was detected by the composite with a short response time of 1 min, and the limit of detection was calculated to be 37 nM that was 17 times lower than the maximum residue limit of CTC in animal food products (626 nM). Excellent recyclability of the composite was also observed, and CTC was consecutively measured at least six times. The composite was used to determine CTC in basa fish and pure milk with satisfactory recoveries (91.0-110.0%). Portable test strips were further manufactured and the visual determination of CTC was obtained. These results convictively demonstrate that CdTe QDs@ZIF-8 composite as a recyclable ratiometric fluorescent sensor achieves the rapid and sensitive measurement of CTC residue in animal food products.
Collapse
Affiliation(s)
- Weikang Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Xinyu Zheng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Feng Gao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Bo Fu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen 361000, PR China.
| | - Fuxiang Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China; School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
14
|
A ratiometric fluorescence-scattering sensor for rapid, sensitive and selective detection of doxycycline in animal foodstuffs. Food Chem 2022; 373:131669. [PMID: 34863605 DOI: 10.1016/j.foodchem.2021.131669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/26/2021] [Accepted: 11/21/2021] [Indexed: 12/27/2022]
Abstract
The residue problem of tetracycline antibiotics, especially doxycycline (DC), in animal foodstuffs has attracted much attention. This paper reported ZIF-8 and bovine serum albumin (BSA) as a ratiometric fluorescence-scattering sensor for DC. The mechanism relied on the disassembly of ZIF-8 caused by DC, bringing weakened second-order scattering, and the double fluorescence amplification of DC under ZIF-8 with BSA, inducing enhanced fluorescence. The response of the sensor was completed within 1 min, and the detection limit for DC (3.4 nM) was 1-2 orders of magnitude lower than the reported ones. The distinguishment of DC from other tetracycline antibiotics was also achieved by the sensor. The sensor was applied to detecting DC in animal foodstuffs with satisfactory recoveries (80.0-104.0%). Hence, this work develops a rapid, sensitive and selective ratiometric sensor to monitor the DC residue in animal foodstuffs, also opens the window to construct ratiometric DC sensors with the fluorescence-scattering strategy.
Collapse
|
15
|
Yang T, Xie Y, Zhang S, He X. Synthesis of Dual Red‐Emitting Fluorescent Silver Nanoclusters in Aqueous Lipoic Acid‐Based Polymer Solutions and Application for Cu
2+
Detection and Cell Imaging. ChemistrySelect 2022. [DOI: 10.1002/slct.202200185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tao Yang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Yangchun Xie
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy East China Normal University Shanghai 200241 China
| | - Xiaohua He
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| |
Collapse
|
16
|
Sha H, Yan B. Dye-functionalized metal-organic frameworks with the uniform dispersion of MnO 2 nanosheets for visualized fluorescence detection of alanine aminotransferase. NANOSCALE 2021; 13:20205-20212. [PMID: 34850792 DOI: 10.1039/d1nr05376k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The wide applications of metal-organic framework (MOF) luminescent materials in the field of optics have attracted the general attention of researchers. Therefore, the development of simple and multifunctional MOF light-emitting platforms have become a research hotspot. The composites (MnO2@ZIF-8-luminol) were prepared by an in situ synthesis method and room-temperature covalent reaction. The composites and o-phenylenediamine (OPD) constitute a dual emission sensor for detecting alanine aminotransferase (ALT). OPD can be oxidized by MnO2 to 2,3-diaminophenazine (DAP) with yellow fluorescence emission, which inhibits the blue emission of luminol through fluorescence resonance energy transfer (FRET). The presence of tiopronin (TP) will destroy the FRET process, extinguishing the yellow fluorescence emission and restoring the blue fluorescence emission. The special effect between ALT and TP will further reverse the changes in the two fluorescent signals. Moreover, in the detection process, when the blue and yellow fluorescence energies in the system are within a certain range, a new white light emission will be generated, which causes the sensing of ALT to present ternary visualization. In addition, a high-security anti-counterfeiting platform is constructed by using the prepared materials and agarose hydrogels. The anti-counterfeiting platform can encrypt information on demand according to the luminous characteristics of different materials. This study not only provides a typical case of ternary visualization sensing by MOF-based materials but also develops a possible method for the construction of a MOF-based hydrogel anti-counterfeiting platform.
Collapse
Affiliation(s)
- Haifeng Sha
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
| |
Collapse
|
17
|
Kukkar P, Kim KH, Kukkar D, Singh P. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Xu T, Li J, Jia M, Li G, Liu Y. Contiguous layer based metal-organic framework with conjugated π-electron ligand for high iodine capture. Dalton Trans 2021; 50:13096-13102. [PMID: 34581332 DOI: 10.1039/d1dt00947h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel 3-dimensional (3D) Cu(II) metal-organic framework (MOF), [Cu3(μ2-O)2(p-tr2Ph)2(HCOO)][NO3]·3DMF·3H2O (compound 1), which is constructed by directly interlocking regionalized hollow two-dimensional (2D) layers, has been conceived and solvothermally synthesized. Such a distinctive regionalized pore system effectively maintains the uniformity of the pore structure, isolates the counterions and bridging ligands in the partition layer, and endows compound 1 with high porosity. In consequence, compound 1 exhibits excellent adsorption ability of iodine in cyclohexane. The removal efficiency in cyclohexane solution (0.01 mol L-1) can reach up to 80% in 8 min, and the absorption ability towards iodine can reach about 1.15 g g-1. Moreover, iodine can also be controllably released in ethanol. The release rate was up to 4 × 10-5 mol L-1 min-1. Furthermore, compound 1 also showed prominent recyclability due to the high stability, and the maximum sorption amount could be retained after 3 cycles. This study paves a new way towards opening up MOFs' potential application in capturing radioactive iodine to protect the environment.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Mingwei Jia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
19
|
Ding L, Zhao Y, Li H, Zhang Q, Yang W, Fu B, Pan Q. A highly selective ratiometric fluorescent probe for doxycycline based on the sensitization effect of bovine serum albumin. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125759. [PMID: 33831705 DOI: 10.1016/j.jhazmat.2021.125759] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Fluorescent probes with in-situ visual feature have received numerous attentions for detecting doxycycline (DC), a semisynthetic tetracycline antibiotic widely used in animal husbandry. However, reported fluorescent probes commonly fail to selectively detect DC among tetracycline antibiotics due to their structural similarity. In this work, bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) were ingeniously used as the ratiometric fluorescent probe for detecting DC over other tetracycline antibiotics through the selective sensitization effect of BSA on DC. After adding DC, the red fluorescence of BSA-AuNCs almost remained unchanged, while the green fluorescence of DC also emerged under the sensitization of BSA. BSA-AuNCs showed the highest response toward DC among tetracycline antibiotics ascribed to the strongest sensitization effect of BSA on DC. BSA-AuNCs also displayed the features of simple synthesis, short response time (1 min) and low detection limit (36 nM). BSA-AuNCs were finally applied to detecting DC in fish samples, and further fabricated into test strips for ease of carrying. Thus, this work proposes an efficient strategy to design fluorescent probe for selectively detecting DC among tetracycline antibiotics.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Yanyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Qiujuan Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China.
| | - Bo Fu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China; School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
20
|
Jiao ZH, Hou SL, Kang XM, Yang XP, Zhao B. Recyclable Luminescence Sensor for Dinotefuran in Water by Stable Cadmium-Organic Framework. Anal Chem 2021; 93:6599-6603. [PMID: 33871967 DOI: 10.1021/acs.analchem.1c01007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the widespread use of dinotefuran around the world, its impact on food and environmental safety has aroused great concern, and the establishment of a rapid and convenient approach for dinotefuran detection is necessary but challenging. Herein, we synthesized a unique three-dimensional framework {[(CH3)2NH2]2[Cd3(BCP)2]·10H2O·3.5DMF}n (1). Single-crystal X-ray analysis indicates that 1 possesses a 4,8-connected anion framework that corresponds to alb topology, with a one-dimensional rectangular channel along the c-axis with the size of 4 Å × 10 Å. Compound 1 displays satisfactory solvent and thermal stability. Luminescent investigations reveal that 1 can selectively detect dinotefuran by fluorescence quenching among other pesticides, displaying excellent anti-interference performance with common ions in water. Importantly, the limit of detection is as low as 2.09 ppm, which is far below the residual concentration of the U.S. food standard. A fluorescence quenching mechanism study shows that there exists competitive energy absorption and static quenching processes. To our knowledge, 1 is the first MOF-based fluorescence probe for dinotefuran detection.
Collapse
Affiliation(s)
- Zhuo-Hao Jiao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xiao-Min Kang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.,Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| | - Xiu-Pei Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Lu M, Zhang Q, Zhang Z, Wang X, Yan B, Wang Y. Confined self-assembled of ZnS nanostructures based on AAO channels for biological molecules response with high sensitivity. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Yang Y, Ren G, Yang W, Qin X, Gu D, Liang Z, Guo DY, Qinhe P. A new MOF-based fluorescent sensor for the detection of nitrofuran antibiotics. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Gu D, Yang W, Chen H, Yang Y, Qin X, Chen L, Wang S, Pan Q. A stable mixed-valent uranium(v,vi) organic framework as a fluorescence thermometer. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00580d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A stable mixed-valent uranium(v/vi) organic framework with a 3D interpenetrating structure was synthesized, which can be used as a dual-responsive fluorescence temperature sensor based on the fluorescence intensity and fluorescence lifetime.
Collapse
Affiliation(s)
- Dongxu Gu
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Weiting Yang
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Huiping Chen
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Yonghang Yang
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Xudong Qin
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Lu Chen
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Song Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices
- Hubei University of Arts and Science
- Xiangyang
- P. R. China
| | - Qinhe Pan
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| |
Collapse
|