1
|
Mullaivendhan J, Ahamed A, Gurusamy R, Akbar I. Synthesis of omega-3 mediated copper (ω-3-Cu) and copper oxide (ω-3-CuO) nanocatalyst dual application of dye decolourization and aerobic oxidation of eco-friendly sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58176-58195. [PMID: 39312113 DOI: 10.1007/s11356-024-34941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
In this study, ω-3-Cu and ω-3-CuO nanocatalysts were investigated for industrial environmental issues. Nowadays, green methodology is very important for addressing industrial environmental issues. In this regard, the current study focuses on ω-3-Cu and ω-3-CuO used for aerobic oxidation and dye decolourization via an eco-friendly approach. The synthesised ω-3-Cu and ω-3-CuO nanocatalysts were characterised using FT-IR, UV, XRD, TEM, GC-MS, 1H and 13C NMR. The results showed that the prepared ω-3-Cu catalyst was almost spherical with forms and sizes typically less than 20 nm and the ω-3-CuO nanocatalyst 10 nm. The ω-3 Cu and ω-3-CuO nanocatalysts were investigated for the conversion of pentan-2-ol into pentan-2-one, which was observed by GC-MS analysis. The ω-3-CuO nanocatalyst decolourised the Brilliant Blue dye more quickly (100% in 30 min) than ω-3-Cu (85% in 60 min) and ω-3 (no colour in 60 min), and Rhodamine B was not decolourised because our ω-3-Cu and ω-3-CuO nanocatalysts inactivated the rhodamine B dye. The aerobic oxidation process using the ω-3-CuO nanocatalyst as the end product of pentan-2-one resulted in a retention time of 30.33. To the best of our knowledge, ω-3-Cu and ω-3-CuO nanocatalysts have not been documented for their application in decolourisation and aerobic oxidation. By highlighting the potential use for the continued advancement and innovation of ω-3-CuO nanocatalysts in the long-term future, cost-effective and eco-friendly methods for producing reusable ω-3-CuO nanocatalysts have the potential to be applied in advanced technical fields, particularly in the areas of dye decolourisation and aerobic oxidation. Finally, we successfully accomplished these processes using the ω-3-CuO nanocatalyst. The ω-3-CuO nanocatalyst evaporated more quickly than the ω-3-Cu and ω-3-CuO nanocatalyst, without any additional energy. ω-3-CuO is the most effective nanocatalyst for dye decolourization and aerobic oxidation (Dual application). ω-3-CuO is used in textile and pharmaceutical industries.
Collapse
Affiliation(s)
- Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Tamil Nadu, Puthanampatti, 621007, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Raman Gurusamy
- Department of Life Science, Yeungnan University, Gyeondsan-38541, Gyeondsan-Buk, South Korea
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Tamil Nadu, Puthanampatti, 621007, India.
| |
Collapse
|
2
|
Akbar I, Mullaivendhan J, Ahamed A, Aljawdah HM. Vitex Negundo-Fe 3O 4-CuO green nanocatalyst ( VN-Fe 3O 4-CuO): synthesis of pyrazolo[3,4- c]pyrazole derivatives via the cyclization of isoniazid with pyrazole and their antimicrobial activity, cytotoxicity, and molecular docking studies. RSC Adv 2024; 14:677-688. [PMID: 38173593 PMCID: PMC10758931 DOI: 10.1039/d3ra06771h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, we developed a novel pyrazolo[3,4-c]pyrazole derivative with antibacterial and antifungal activities that shows great potential for treating infectious diseases. To evaluate the binding affinity of 1AJ0 and 1AI9 proteins for developing potent antibacterial and antifungal compounds, we used the Vitex negundo (VN) leaf extract as the capping and reducing agent and reacted it with Fe2O3 and Cu(OAc)2 solutions to synthesize the VN-Fe3O4-CuO nanocatalyst. The newly synthesized compounds were confirmed using Fourier transform infrared spectroscopy, transmission electron microscopy, UV-visible spectroscopy, and X-ray diffraction analyses. Antibacterial screening revealed that compound 1g was highly active against Escherichia coli (MIC: 1 μg mL-1) and was much more effective than the standard ciprofloxacin. Compound 1b showed a higher antifungal activity than clotrimazole against Candida albicans (MIC: 0.25 μg mL-1) and cytotoxic activity against MCF-7 cancer cell lines. Compounds 1a-1l were exhibited low cytotoxicity activity compared to the standard doxorubicin (LC50: 21.05 ± 0.82 μg mL-1). To further support the discovery of new active antibacterial agents, compounds 1g and 1b and proteins 1AJ0 and 1AI9 were examined using the AutoDock Vina program and were compared with the standards ciprofloxacin and clotrimazole. With the 1AJ0 protein, compound 1g had a higher docking score (-3.7 kcal mol-1) than ciprofloxacin (-5.6 kcal mol-1), and with the 1AI9 protein, compound 1b had a higher docking score (-4.8 kcal mol-1) than clotrimazole (-4.4 kcal mol-1). Additionally, molecular dynamics simulation was used to investigate the most probable binding mode of compounds 1b and 1g with 1AI9 and 1AJ0, respectively. The VN-Fe3O4-CuO catalyst was used to prepare pyrazolo[3,4-c]pyrazole derivatives, which were successfully characterized and screened for antimicrobial and cytotoxic activities, molecular docking, and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University) Puthanampatti 621007 Tamil Nadu India
| | - Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University) Puthanampatti 621007 Tamil Nadu India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
3
|
Pushpanandan P, Behera KC, Ravikanth M. Pd(II), Ni(II), and Cu(II) complexes of α,α'-ditolylmethanone dipyrroethene. Dalton Trans 2023; 52:6882-6889. [PMID: 37157997 DOI: 10.1039/d3dt00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Dipyrromethenes containing two pyrrole rings connected by one meso-carbon are versatile monoanionic bidentate ligands and form coordination complexes with many metals/nonmetals/metalloids. Dipyrroethenes containing one additional meso-carbon compared to dipyrromethenes have more space between coordinating pyrrole nitrogens and provide a good coordination environment but have not been explored as ligands in coordination chemistry. Dipyrroethenes are dianionic bidentate ligands and by suitable modifications, the coordination environment of dipyrroethenes can be changed further. Herein, we successfully synthesized α,α'-ditolylmethanone dipyrroethene which is a bipyrrolic tetradentate ligand with an ONNO ligand core and used it for the synthesis of novel Pd(II), Ni(II), and Cu(II) metal complexes by treating it with respective metal salts in CH2Cl2/CH3OH at room temperature. The X-ray crystallographic structure of the metal complexes showed that the M(II) ion was coordinated to the ONNO atoms of the ligand in a perfect square planar geometry. The NMR studies of Pd(II) and Ni(II) complexes also supported the highly symmetric nature of the metal complexes. The absorption spectra of the metal complexes showed strong bands in the region of 300-550 nm. The electrochemical studies of metal complexes revealed that only ligand-based oxidation and reduction were observed. The DFT and TD-DFT studies were in agreement with the experimental observations. Our preliminary studies indicated that the Pd(II) complex can be used as a catalyst for the Fujiwara-Moritani olefination reaction.
Collapse
|
4
|
Patel A, Patel J, Pathan S. Highly Active and Dispersed Pd Nanoparticles Stabilized by Lacunary Phosphomolybdate: Synthesis, Characterization, and Liquid Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. Inorg Chem 2023; 62:6970-6980. [PMID: 37104732 DOI: 10.1021/acs.inorgchem.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In the current scenario, one of the crucial reaction conversions is the synthesis of renewable biofuels and value-added chemicals from the hydrogenation of biomass. Therefore, in the present work, we are proposing aqueous phase conversion of levulinic acid to γ-valerolactone via hydrogenation using formic acid as a sustainable green hydrogen source over a sustainable heterogeneous catalyst. The catalyst based on Pd nanoparticles stabilized by lacunary phosphomolybdate (PMo11Pd) was designed for the same and characterized by EDX, FT-IR, 31P NMR, powder XRD, XPS, TEM, HRTEM, and HAADF-STEM analyses. A detailed optimization study was done to achieve maximum conversion (95% conversion), using a very small amount of Pd (1.879 × 10-3 mmol) with notable TON (2585) at 200 °C in 6 h. The regenerated catalyst was found to be workable (reusable) up to three cycles without any change in activity. Also, a plausible reaction mechanism was proposed. The catalyst exhibits superior activity against reported catalysts.
Collapse
Affiliation(s)
- Anjali Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 39002, Gujarat, India
| | - Jay Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 39002, Gujarat, India
| | - Soyeb Pathan
- Centre of Research for Development (CR4D), Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| |
Collapse
|
5
|
Albino M, Burden TJ, Piras CC, Whitwood AC, Fairlamb IJS, Smith DK. Mechanically Robust Hybrid Gel Beads Loaded with "Naked" Palladium Nanoparticles as Efficient, Reusable, and Sustainable Catalysts for the Suzuki-Miyaura Reaction. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1678-1689. [PMID: 36778525 PMCID: PMC9906743 DOI: 10.1021/acssuschemeng.2c05484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/05/2023] [Indexed: 05/27/2023]
Abstract
The increase in demand for Pd and its low abundance pose a significant threat to its future availability, rendering research into more sustainable Pd-based technologies essential. Herein, we report Pd scavenging mechanically robust hybrid gel beads composed of agarose, a polymer gelator (PG), and an active low-molecular-weight gelator (LMWG) based on 1,3:2,4-dibenzylidenesorbitol (DBS), DBS-CONHNH 2 . The robustness of the PG and the ability of the LMWG to reduce Pd(II) in situ to generate naked Pd(0) nanoparticles (PdNPs) combine within these gel beads to give them potential as practical catalysts for Suzuki-Miyaura cross-coupling reactions. The optimized gel beads demonstrate good reusability, green metrics, and most importantly the ability to sustain stirring, improving reaction times and energy consumption compared to previous examples. In contrast to previous reports, the leaching of palladium from these next-generation beads is almost completely eliminated. Additionally, for the first time, a detailed investigation of these Pd-loaded gel beads explains precisely how the nanoparticles are formed in situ without a stabilizing ligand. Further, detailed catalytic investigations demonstrate that catalysis occurs within the gel beads. Hence, these beads can essentially be considered as robust "nonligated" heterogeneous PdNP catalysts. Given the challenges in developing ligand-free, naked Pd nanoparticles as stable catalysts, these gel beads may have future potential for the development of easily used systems to perform chemical reactions in "kit" form.
Collapse
|
6
|
CuxPd1-xO nanoparticle-reduced graphene oxide nanocomposite catalyzed direct ortho-C–H acylation of 2-aryl pyridines. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Efficiency of zero-dimensional and two-dimensional graphene architectural nanocomposites for organic transformations in the contemporary environment: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [PMCID: PMC9610332 DOI: 10.1007/s13738-022-02678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Graphene derivatives-based nanocatalyst finds increasing utilisation in the catalysis field for organic transformations. Researchers have been working on the development of graphene oxide, reduced graphene oxide, and graphene quantum dots with metal or metal oxide nanocomposites over the last few years. These materials exhibit excellent electrical, catalytic, optical, thermal, and magnetic properties. In particular, GO/rGO/GQDs composites assisted by metal or metal oxides have attracted broad attention for their possible applications in organic compound synthesis, drug delivery, sensors, devices, and the related areas of the environment. In this review, we have summarised GO/rGO/GQDs-metal or metal oxide composites using catalyst for organic conversions and synthesis of organic compounds in accordance with the discussion on the key problems and prospects for future study. Furthermore, there is a significant function for the catalytic efficiency of composites assisted by metal or metal oxide nanocatalyst which is categorised by graphene derivatives bases.
Collapse
|
8
|
Yahya RO. Magnetic Graphene Oxide/Carboxymethyl-Imidazolium-Grafted Chitosan Schiff Base Nanocomposite: A New PdNPs Support for Efficient Catalytic Reduction of Hazardous Nitroarenes. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Fast reversible oxidative addition of demanding aryl chlorides to Pd under real conditions of catalysis in the Mizoroki-Heck reaction: The kinetic proof. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Highly efficient hydrogenation and dehydrogenation of N-Heteroarenes catalyzed by mesoporous graphitic carbon nitride supported CoPd alloy nanoparticles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Application of magnetic sulfonated Alnus waste leaves as a heterogeneous catalyst for multi-component reactions; comparison and evaluation of acidity of eleven different leaves. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Mironenko RM, Likholobov VA, Belskaya OB. Nanoglobular carbon and palladium - carbon catalysts for liquid-phase hydrogenation of organic compounds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Zhang M, Zou Y, Zhang S, Qu Y. Modulated electronic structure of Pd nanoparticles on Mg(OH) 2 for selective benzonitrile hydrogenation into benzylamine at a low temperature. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd nanoparticles with enriched electronic density anchored on Mg(OH)2 realize selective benzonitrile hydrogenation to benzylamine at low temperature in the absence of additives, in an atom-economical and green approach for synthesis of highly value-added primary amines.
Collapse
Affiliation(s)
- Mingkai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Zou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Yongquan Qu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
14
|
Recent advances in copper oxide nanocatalyzed C C cross-coupling transformations. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Rahmani A, Currie TM, Shultz LR, Bryant JT, Beazley MJ, Uribe-Romo FJ, Tetard L, Rudawski NG, Xie S, Liu F, Wang TH, Ong TG, Zhai L, Jurca T. Robust palladium catalysts on nickel foam for highly efficient hydrogenations. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01082h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combination of a polydopamine interface, solvothermal seeding of Pd(OAc)2, and ALD Al2O3 overcoat enables the formation of evenly-coated, ultralow Pd loading Ni foam monolith materials.
Collapse
Affiliation(s)
- Azina Rahmani
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Taylor M. Currie
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Lorianne R. Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Jacob T. Bryant
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Melanie J. Beazley
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | | | - Laurene Tetard
- Department of Physics, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
| | - Nicholas G. Rudawski
- Herbert Wertheim College of Engineering Research Service Centers, University of Florida, Gainesville, FL, 32611, USA
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Fudong Liu
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- Renewable Energy and Chemical Transformations Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| | - Ting-Hsuan Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Lei Zhai
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Renewable Energy and Chemical Transformations Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| |
Collapse
|
16
|
Yang X, Tan LX, Sun JK. Encapsulation of Metal Clusters within Porous Organic Materials: From Synthesis to Catalysis Applications. Chem Asian J 2021; 17:e202101289. [PMID: 34964281 DOI: 10.1002/asia.202101289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/27/2021] [Indexed: 11/05/2022]
Abstract
Metal clusters (MCs) with dimensions between a single metal atom and nanoparticles of >2 nm usually possess distinct geometric and electronic structures, their outstanding performance in catalysis applications have underpinned a broad research interest. However, smaller-sized MCs are easily deactivated by migration coalescence during the catalysis process because of their high surface energy. Therefore, the search of an appropriate stabilizer for MCs is urgently demanded. In recent years, porous organic polymers (POPs) and organic molecular cages (OMCs), as emerging functional materials, have attracted significant attention. Benefiting from the spatial confinement, encapsulating MCs into these porous organic materials is a promising approach to guarantee the uniform size distribution and stability. In this review, we aim to provide a comprehensive summary of the recent progress in the synthetic strategies and catalysis applications of the encapsulated MCs, and seek to uncover promising ideas that can stimulate future developments at both the fundamental and applied levels.
Collapse
Affiliation(s)
- Xiaodong Yang
- Beijing Institute of Technology, chemistry and chemical engineering, CHINA
| | - Liang-Xiao Tan
- Beijing Institute of Technology, chemistry and chemical engineering, CHINA
| | - Jian-Ke Sun
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 8 East Liangxiang Street, Fangshan District, Beijing, 102488, Beijing, CHINA
| |
Collapse
|
17
|
Zozik Y, Sevim M, Lafzi F, Kilic H, Metin Ö. Magnetically recoverable nickel-palladium alloy nanocatalysts for direct C-H arylation reactions. Dalton Trans 2021; 50:17515-17523. [PMID: 34762086 DOI: 10.1039/d1dt02985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel magnetically recoverable nanocatalyst comprising nickel-palladium (NiPd) alloy nanoparticles (NPs) supported on reduced graphene oxide (rGO) modified with cobalt ferrite (CoFe2O4) NPs was fabricated for the direct C-H arylation of imidazopyridine, imidazole, indolizine and furan with aryl halides. To prepare the presented catalyst, rGO nanosheets were first modified with as-synthesized CoFe2O4 NPs and then the obtained CoFe2O4-rGO nanocomposites served as a support material for the synthesis of bimetallic NiPd alloy NPs at various compositions. The obtained CoFe2O4-rGO/NiPd nanocatalysts were characterized by many advanced analytical techniques including TEM, STEM-EDS, XRD, XPS, and ICP-MS. Next, to optimize the reaction conditions, CoFe2O4-rGO/NiPd nanocatalysts with different alloy compositions and their monometallic counterparts (CoFe2O4-rGO/Ni and CoFe2O4-rGO/Pd) were initially tested in the direct C-H arylation of imidazopyridine with bromobenzene. Among all tested nanocatalysts under the optimum reaction conditions, CoFe2O4-rGO/Ni20Pd80 showed the best catalytic activity in terms of the isolated product yields. The C-H arylation reactions were studied over a broad substrate scope (35 examples from 36 substrates) and gave the related biaryl products in good to excellent yields. Besides a broad substrate scope, the late-stage C-H arylation of zolimidine, a gastroprotective drug, was realized under the optimized reaction conditions. Moreover, the CoFe2O4-rGO/Ni20Pd80 nanocatalysts were recovered from the reaction medium using a simple magnet and reused in the C-H arylation reactions up to five consecutive runs without a significant drop in the product yield. This study shows that magnetically recoverable Pd nanoalloys are promising heterogeneous catalysts to be used in sustainable C-H functionalization reactions.
Collapse
Affiliation(s)
- Yunus Zozik
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey. .,Oltu Vocational Training School, 25400, Oltu, Erzurum, Turkey
| | - Melike Sevim
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey. .,Department of Nanoscience and Nanoengineering, Atatürk University, 25240, Erzurum, Turkey
| | - Ferruh Lafzi
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Haydar Kilic
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey. .,Oltu Vocational Training School, 25400, Oltu, Erzurum, Turkey
| | - Önder Metin
- Department of Chemistry, College of Sciences, Koç University, 34450, Sarıyer, İstanbul, Turkey.
| |
Collapse
|
18
|
Abstract
Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has attracted much attention and their use in C–C bond forming reactions constitutes one of their most important applications. A huge variety of metal NPs, which have showed high catalytic activity for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs catalysts. This review classified and outlined the categories of metal NPs by the type of support.
Collapse
|
19
|
Bahadur A, Iqbal S, Ujan R, Channar PA, Al-Anazy MM, Saeed A, Mahmood Q, Shoaib M, Shah M, Arshad I, Shabir G, Saifullah M, Liu G, Qayyum MA. Effect of organic solvents on solvatochromic, fluorescence, and electrochemical properties of synthesized thiazolylcoumarin derivatives. LUMINESCENCE 2021; 36:1189-1197. [PMID: 33759314 DOI: 10.1002/bio.4044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
In this present investigation, thiazolylcoumarin derivatives (5a-5k) were synthesized from thiosemicarbazide, ethyl acetoacetate, and naphthaldehyde through a multistep route. The formation of thiazolylcoumarin derivatives with bioactive scaffolds was confirmed through nuclear magnetic resonance spectroscopy. A solvatochromic study of synthesized thiazolylcoumarin derivatives was carried out using ultraviolet-visible methods for dimethylformamide (DMF), ethyl acetate, and ethanol solvents. The redox behaviour of as-synthesized thiazolylcoumarin derivatives (5a-5k) was examined in dimethyl sulphoxide by conducting an electrochemical study. Fluorescence properties of thiazolylcoumarin derivatives were studied in DMF, ethanol, and ethyl acetate to visualize the solvent effect on the emitting ability of thiazolylcoumarin derivatives.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Shahid Iqbal
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | | | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qaiser Mahmood
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shoaib
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mazloom Shah
- Department of chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ifzan Arshad
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Guocong Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Muhammad Abdul Qayyum
- Department of Chemistry Division of Science and Technology University of Education Lahore, Pakistan
| |
Collapse
|