1
|
Paolillo M, Ferraro G, Sahu G, Pattanayak PD, Garribba E, Halder S, Ghosh R, Mondal B, Chatterjee PB, Dinda R, Merlino A. Interaction of V VO 2-hydrazonates with lysozyme. J Inorg Biochem 2024; 264:112787. [PMID: 39642703 DOI: 10.1016/j.jinorgbio.2024.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Vanadium compounds (VCs) exhibit a broad range of pharmacological properties, with their most significant medical applications being in the treatment of cancer and diabetes. The therapeutic effects and mode of action of VCs may be associated with their ability to bind proteins and, consequently, understanding the VC-protein interaction is of paramount importance. Among the promising VCs, the VVO2 complex with the aroylhydrazone furan-2-carboxylic acid ((3-ethoxy-2-hydroxybenzylidene)hydrazide, hereafter denoted as VC1), deserves attention, since it exhibits cytotoxicity against various cancer cell lines, including HeLa. The interaction between VC1 and its analogue, denoted as VC2 (the dioxidovanadium(V) complex with (E)-N'-(1-(2-hydroxy-5-methoxyphenyl)ethylidene)furan-2-carbohydrazide), and hen egg white lysozyme (HEWL) was examined by UV-vis spectroscopy, fluorescence, circular dichroism, and X-ray crystallography. The interaction of VC1 and VC2 with HEWL does not alter the protein secondary and tertiary structure. Crystallographic studies indicate that the two metal complexes or V-containing fragments originating from VC1 and VC2 bind the protein via non-covalent interactions. Furthermore, when bound to HEWL, two VC1 molecules and two VC2 molecules form a supramolecular association stabilized by stacking interactions. This type of interaction could favour the binding of similar compounds to proteins and affect their biological activity.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Sourangshu Halder
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
| | - Bipul Mondal
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy.
| |
Collapse
|
2
|
Paolillo M, Ferraro G, Pisanu F, Maréchal JD, Sciortino G, Garribba E, Merlino A. Protein-Protein Stabilization in V IVO/8-Hydroxyquinoline-Lysozyme Adducts. Chemistry 2024; 30:e202401712. [PMID: 38923243 DOI: 10.1002/chem.202401712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2 + to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 are revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the covalent binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
3
|
Küssner K, Ugone V, Sanna D, Cziferszky M. In-Depth Mass Spectrometry Study of Vanadium(IV) Complexes with Model Peptides. Inorg Chem 2024; 63:17785-17796. [PMID: 39264738 PMCID: PMC11423397 DOI: 10.1021/acs.inorgchem.4c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Investigating the speciation of vanadium complexes in the presence of potential biomolecular targets under physiological conditions remains challenging, and further experimental techniques are needed to better understand the mechanism of action of potential metallodrugs. The interaction of two model peptides (angiotensin I and angiotensin II) with three well-known oxidovanadium(IV) compounds with antidiabetic and/or anticancer activity, [VIVO(pic)2(H2O)], [VIVO(ma)2], and [VIVO(dhp)2] (where pic, ma, and dhp are picolinate, maltolate, and 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate anions, respectively), was investigated by ESI-MS/MS (electrospray ionization tandem mass spectrometry) and complemented by EPR (electron paramagnetic resonance) spectroscopy measurements and theoretical calculations at the DFT (density functional theory) level. The results demonstrated that vanadium-peptide bonds are preserved after HCD (higher energy collisional dissociation) fragmentation, allowing for the identification of binding sites through a detailed analysis of the fragmentation spectra. Angiotensin I (AT1) and angiotensin II (AT2) exhibited different coordination behaviors. AT1, with two His residues (His6, His9), prefers to form [AT1 + VOL] adducts with both histidine residues coordinated to the metal ion, while AT2, which has only His6, can bind the metal in a monodentate fashion, forming also [AT2 + VOL2] adducts. Insights from this study pave the way to ESI-MS/MS investigations of more complex systems, including target proteins and further development of vanadium-based drugs.
Collapse
Affiliation(s)
- Kira Küssner
- Institute for Pharmacy, Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| | - Valeria Ugone
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Traversa La Crucca 3, Sassari 07040, Italy
| | - Daniele Sanna
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Traversa La Crucca 3, Sassari 07040, Italy
| | - Monika Cziferszky
- Institute for Pharmacy, Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| |
Collapse
|
4
|
Tito G, Ferraro G, Pisanu F, Garribba E, Merlino A. Non-Covalent and Covalent Binding of New Mixed-Valence Cage-like Polyoxidovanadate Clusters to Lysozyme. Angew Chem Int Ed Engl 2024; 63:e202406669. [PMID: 38842919 DOI: 10.1002/anie.202406669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
The high-resolution X-ray structures of the model protein lysozyme in the presence of the potential drug [VIVO(acetylacetonato)2] from crystals grown in 1.1 M NaCl, 0.1 M sodium acetate at pH 4.0 reveal the binding to the protein of different and unexpected mixed-valence cage-like polyoxidovanadates (POVs): [V15O36(OH2)]5-, which non-covalently interacts with the lysozyme surface, [V15O33(OH2)]+ and [V20O51(OH2)]n- (this latter based on an unusual {V18O43} cage) which covalently bind the protein. EPR spectroscopy confirms the partial oxidation of VIV to VV and the formation of mixed-valence species. The results indicate that the interaction with proteins can stabilize the structure of unexpected - both for dimension and architecture - POVs, not observed in aqueous solution.
Collapse
Affiliation(s)
- Gabriella Tito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
5
|
Chiaverini L, Tolbatov I, Marrone A, Marzo T, Biver T, La Mendola D. Unveiling the mechanism of activation of the Te(IV) prodrug AS101. New chemical insights towards a better understanding of its medicinal properties. J Inorg Biochem 2024; 256:112567. [PMID: 38669911 DOI: 10.1016/j.jinorgbio.2024.112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
AS101 (Ammonium trichloro (dioxoethylene-O,O') tellurate) is an important hypervalent Te-based prodrug. Recently, we started a systematic investigation on AS101 with the aim to correlate its promising biological effects as a potent immunomodulator drug with multiple medicinal applications and its specific chemical properties. To date, a substantial agreement on the rapid conversion of the initial AS101 species into the corresponding TeOCl3- anion does exist, and this latter species is reputed as the pharmacologically active one. However, we realized that TeOCl3- could quickly undergo further steps of conversion in an aqueous medium, eventually producing the TeO2 species. Using a mixed experimental and theoretical investigation approach, we characterized the conversion process leading to TeO2 occurring both in pure water and in reference buffers at physiological-like pH. Our findings may offer a valuable "chemical tool" for a better description, interpretation -and optimization- of the mechanism of action of AS101 and Te-based compounds. This might be a starting point for improved AS101-based medicinal application.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Iogann Tolbatov
- Department of Physics and Astronomy, University of Padova, via F. Marzolo 8, 35131 Padova, Italy
| | - Alessandro Marrone
- Department of Pharmacy, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
6
|
Banerjee A, Patra SA, Sahu G, Sciortino G, Pisanu F, Garribba E, Carvalho MFNN, Correia I, Pessoa JC, Reuter H, Dinda R. A Series of Non-Oxido V IV Complexes of Dibasic ONS Donor Ligands: Solution Stability, Chemical Transformations, Protein Interactions, and Antiproliferative Activity. Inorg Chem 2023; 62:7932-7953. [PMID: 37154533 PMCID: PMC10367067 DOI: 10.1021/acs.inorgchem.3c00753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A series of mononuclear non-oxido vanadium(IV) complexes, [VIV(L1-4)2] (1-4), featuring tridentate bi-negative ONS chelating S-alkyl/aryl-substituted dithiocarbazate ligands H2L1-4, are reported. All the synthesized non-oxido VIV compounds are characterized by elemental analysis, spectroscopy (IR, UV-vis, and EPR), ESI-MS, as well as electrochemical techniques (cyclic voltammetry). Single-crystal X-ray diffraction studies of 1-3 reveal that the mononuclear non-oxido VIV complexes show distorted octahedral (1 and 2) or trigonal prismatic (3) arrangement around the non-oxido VIV center. EPR and DFT data indicate the coexistence of mer and fac isomers in solution, and ESI-MS results suggest a partial oxidation of [VIV(L1-4)2] to [VV(L1-4)2]+ and [VVO2(L1-4)]-; therefore, all these three complexes are plausible active species. Complexes 1-4 interact with bovine serum albumin (BSA) with a moderate binding affinity, and docking calculations reveal non-covalent interactions with different regions of BSA, particularly with Tyr, Lys, Arg, and Thr residues. In vitro cytotoxic activity of all complexes is assayed against the HT-29 (colon cancer) and HeLa (cervical cancer) cells and compared with the NIH-3T3 (mouse embryonic fibroblast) normal cell line by MTT assay and DAPI staining. The results suggest that complexes 1-4 are cytotoxic in nature and induce cell death in the cancer cell lines by apoptosis and that a mixture of VIV, VV, and VVO2 species could be responsible for the biological activity.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona 43007, Spain
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, Sassari I-07100, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, Sassari I-07100, Italy
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, Osnabruck 49069, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
7
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Do bioactive 8-hydroxyquinolines oxidovanadium(IV) and (V) complexes inhibit the growth of M. smegmatis? J Inorg Biochem 2022; 237:111984. [PMID: 36152468 DOI: 10.1016/j.jinorgbio.2022.111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
Abstract
The antiproliferative effects of four series of VIVO- and VVO-based compounds containing 8-hydroxyquinoline ligands on the bacterium Mycolicibacterium smegmatis (M. smeg) were investigated. The effects on M. smeg were compared to the antiproliferative effects on the protozoan parasite Trypanosoma cruzi (T. cruzi), the causative agent for Chagas disease. In this study, we investigate the speciation of these compounds under physiological conditions as well as the antiproliferative effects on the bacterium M. smeg. We find that the complexes are more stable the less H2O is present, and that the stability increases in lipid-like environments. Only one heteroleptic complex and two homoleptic complexes were found to show similar antiproliferative effects on M. smeg as reported for T. cruzi so the responses generally observed by M.smeg. is less than observed by the pathogen. In summary, we find that M. smeg is more sensitive to the detailed structure of the V-complex but overall these complexes are less effective against M. smeg compared to T. cruzi.
Collapse
|
9
|
Ferraro G, Paolillo M, Sciortino G, Garribba E, Merlino A. Multiple and Variable Binding of Pharmacologically Active Bis(maltolato)oxidovanadium(IV) to Lysozyme. Inorg Chem 2022; 61:16458-16467. [PMID: 36205235 PMCID: PMC9579999 DOI: 10.1021/acs.inorgchem.2c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The interaction with
proteins of metal-based drugs plays a crucial
role in their transport, mechanism, and activity. For an active MLn complex, where L is the organic carrier,
various binding modes (covalent and non-covalent, single or multiple)
may occur and several metal moieties (M, ML, ML2, etc.)
may interact with proteins. In this study, we have evaluated the interaction
of [VIVO(malt)2] (bis(maltolato)oxidovanadium(IV)
or BMOV, where malt = maltolato, i.e., the common name for 3-hydroxy-2-methyl-4H-pyran-4-onato) with the model protein hen egg white lysozyme
(HEWL) by electrospray ionization mass spectrometry, electron paramagnetic
resonance, and X-ray crystallography. The multiple binding of different
V-containing isomers and enantiomers to different sites of HEWL is
observed. The data indicate both non-covalent binding of cis-[VO(malt)2(H2O)] and [VO(malt)(H2O)3]+ and covalent binding of [VO(H2O)3–4]2+ and cis-[VO(malt)2] and other V-containing fragments to the side chains of Glu35,
Asp48, Asn65, Asp87, and Asp119 and to the C-terminal carboxylate.
Our results suggest that the multiple and variable interactions of
potential VIVOL2 drugs with proteins can help
to better understand their solution chemistry and contribute to define
the molecular basis of the mechanism of action of these intriguing
molecules. The interaction of [VIVO(malt)2] (BMOV,
malt = maltolato) with hen egg white lysozyme (HEWL) reveals the multiple
binding of different V-containing isomers and enantiomers to different
sites and non-covalent and covalent binding of cis-[VO(malt)2(H2O)], [VO(malt)(H2O)3]+, [VO(H2O)3−4]2+, and cis-[VO(malt)2] to Glu,
Asp, and Asn residues.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Maddalena Paolillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
10
|
Santos MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Costa Pessoa J. Binding of V IV O 2+ , V IV OL, V IV OL 2 and V V O 2 L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications. Chemistry 2022; 28:e202200105. [PMID: 35486702 DOI: 10.1002/chem.202200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.
Collapse
Affiliation(s)
- Marino F A Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007, Tarragona, Spain
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Andreia C P Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
11
|
Ribeiro N, Bulut I, Pósa V, Sergi B, Sciortino G, Pessoa JC, Maia LB, Ugone V, Garribba E, Enyedy ÉA, Acilan C, Correia I. Solution chemical properties and anticancer potential of 8-hydroxyquinoline hydrazones and their oxidovanadium(IV) complexes. J Inorg Biochem 2022; 235:111932. [DOI: 10.1016/j.jinorgbio.2022.111932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 12/28/2022]
|
12
|
New mixed ligand oxidovanadium(IV) complexes: Solution behavior, protein interaction and cytotoxicity. J Inorg Biochem 2022; 233:111853. [DOI: 10.1016/j.jinorgbio.2022.111853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
|
13
|
Ugone V, Pisanu F, Garribba E. Interaction of pharmacologically active pyrone and pyridinone vanadium(IV,V) complexes with cytochrome c. J Inorg Biochem 2022; 234:111876. [DOI: 10.1016/j.jinorgbio.2022.111876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 01/11/2023]
|
14
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Corona-Motolinia ND, Martínez-Valencia B, Noriega L, Sánchez-Gaytán BL, Melendez FJ, García-García A, Choquesillo-Lazarte D, Rodríguez-Diéguez A, Castro ME, González-Vergara E. Tris(2-Pyridylmethylamine)V(O)2 Complexes as Counter Ions of Diprotonated Decavanadate Anion: Potential Antineoplastic Activity. Front Chem 2022; 10:830511. [PMID: 35252118 PMCID: PMC8888438 DOI: 10.3389/fchem.2022.830511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
The synthesis and theoretical-experimental characterization of a novel diprotanated decavanadate is presented here due to our search for novel anticancer metallodrugs. Tris(2-pyridylmethyl)amine (TPMA), which is also known to have anticancer activity in osteosarcoma cell lines, was introduced as a possible cationic species that could act as a counterpart for the decavanadate anion. However, the isolated compound contains the previously reported vanadium (V) dioxido-tpma moieties, and the decavanadate anion appears to be diprotonated. The structural characterization of the compound was performed by infrared spectroscopy and single-crystal X-ray diffraction. In addition, DFT calculations were used to analyze the reactive sites involved in the donor-acceptor interactions from the molecular electrostatic potential maps. The level of theory mPW1PW91/6–31G(d)-LANL2DZ and ECP = LANL2DZ for the V atom was used. These insights about the compounds’ main interactions were supported by analyzing the noncovalent interactions utilizing the AIM and Hirshfeld surfaces approach. Molecular docking studies with small RNA fragments were used to assess the hypothesis that decavanadate’s anticancer activity could be attributed to its interaction with lncRNA molecules. Thus, a combination of three potentially beneficial components could be evaluated in various cancer cell lines.
Collapse
Affiliation(s)
- Nidia D. Corona-Motolinia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Beatriz Martínez-Valencia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lisset Noriega
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Francisco J. Melendez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Amalia García-García
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| |
Collapse
|
16
|
Sánchez-Aparicio JE, Sciortino G, Mates-Torres E, Lledós A, Maréchal JD. Successes and challenges in multiscale modelling of artificial metalloenzymes: the case study of POP-Rh 2 cyclopropanase. Faraday Discuss 2022; 234:349-366. [PMID: 35147145 DOI: 10.1039/d1fd00069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular modelling applications in metalloenzyme design are still scarce due to a series of challenges. On top of that, the simulations of metal-mediated binding and the identification of catalytic competent geometries require both large conformational exploration and simulation of fine electronic properties. Here, we demonstrate how the incorporation of new tools in multiscale strategies, namely substrate diffusion exploration, allows taking a step further. As a showcase, the enantioselective profiles of the most outstanding variants of an artificial Rh2-based cyclopropanase (GSH, HFF and RFY) developed by Lewis and co-workers (Nat. Commun., 2015, 6, 7789 and Nat. Chem., 2018, 10, 318-324) have been rationalized. DFT calculations on the free-cofactor-mediated process identify the carbene insertion and the cyclopropanoid formation as crucial events, the latter being the enantiodetermining step, which displays up to 8 competitive orientations easily altered by the protein environment. The key intermediates of the reaction were docked into the protein scaffold showing that some mutated residues have direct interaction with the cofactor and/or the co-substrate. These interactions take the form of a direct coordination of Rh in GSH and HFF and a strong hydrophobic patch with the carbene moiety in RFY. Posterior molecular dynamics sustain that the cofactor induces global re-arrangements of the protein. Finally, massive exploration of substrate diffusion, based on the GPathFinder approach, defines this event as the origin of the enantioselectivity in GSH and RFY. For HFF, fine molecular dockings suggest that it is likely related to local interactions upon diffusion. This work shows how modelling of long-range mutations on the catalytic profiles of metalloenzymes may be unavoidable and software simulating substrate diffusion should be applied.
Collapse
Affiliation(s)
| | - Giuseppe Sciortino
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Eric Mates-Torres
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Agustí Lledós
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jean-Didier Maréchal
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
17
|
Medina-Franco JL, López-López E, Andrade E, Ruiz-Azuara L, Frei A, Guan D, Zuegg J, Blaskovich MA. Bridging informatics and medicinal inorganic chemistry: toward a database of metallodrugs and metallodrug candidates. Drug Discov Today 2022; 27:1420-1430. [DOI: 10.1016/j.drudis.2022.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
|
18
|
Ferraro G, Demitri N, Vitale L, Sciortino G, Sanna D, Ugone V, Garribba E, Merlino A. Spectroscopic/Computational Characterization and the X-ray Structure of the Adduct of the V IVO-Picolinato Complex with RNase A. Inorg Chem 2021; 60:19098-19109. [PMID: 34847328 PMCID: PMC8693189 DOI: 10.1021/acs.inorgchem.1c02912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/12/2022]
Abstract
The structure, stability, and enzymatic activity of the adduct formed upon the reaction of the V-picolinato (pic) complex [VIVO(pic)2(H2O)], with an octahedral geometry and the water ligand in cis to the V═O group, with the bovine pancreatic ribonuclease (RNase A) were studied. While electrospray ionization-mass spectrometry, circular dichroism, and ultraviolet-visible absorption spectroscopy substantiate the interaction between the metal moiety and RNase A, electron paramagnetic resonance (EPR) allows us to determine that a carboxylate group, stemming from Asp or Glu residues, and imidazole nitrogen from His residues are involved in the V binding at acidic and physiological pH, respectively. Crystallographic data demonstrate that the VIVO(pic)2 moiety coordinates the side chain of Glu111 of RNase A, by substituting the equatorial water molecule at acidic pH. Computational methods confirm that Glu111 is the most affine residue and interacts favorably with the OC-6-23-Δ enantiomer establishing an extended network of hydrogen bonds and van der Waals stabilizations. By increasing the pH around neutrality, with the deprotonation of histidine side chains, the binding of the V complex to His105 and His119 could occur, with that to His105 which should be preferred when compared to that to the catalytically important His119. The binding of the V compound affects the enzymatic activity of RNase A, but it does not alter its overall structure and stability.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Nicola Demitri
- Elettra−Sincrotrone
Trieste, S.S. 14 km 163.5
in Area Science Park, 34149 Trieste, Italy
| | - Luigi Vitale
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Giuseppe Sciortino
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento
di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| |
Collapse
|
19
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Sanna D, Lubinu G, Ugone V, Garribba E. Influence of temperature on the equilibria of oxidovanadium(IV) complexes in solution. Dalton Trans 2021; 50:16326-16335. [PMID: 34734597 DOI: 10.1039/d1dt02680a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The equilibria in the solution of three different oxidovanadium(IV) complexes, VO(dhp)2 (dhp = 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonato), VO(ma)2 (ma = maltolato) and VO(pic)2(H2O) (pic = picolinato), were examined in the temperature range of 120-352 K through a combination of instrumental (EPR spectroscopy) and computational techniques (DFT methods). The results revealed that a general equilibrium exists: VOL2 + H2O ⇄ cis-VOL2(H2O) ⇄ trans-VOL2(H2O), where cis and trans refer to the relative position of H2O and the oxido ligand. The equilibrium is more or less shifted to the right depending on the ligand, the temperature, the ionic strength and the coordinating properties of the solvent. With VO(dhp)2, only the square pyramidal species exists at 298 K in aqueous solution, while at 120 K the cis- and trans-VO(dhp)2(H2O) species are also present. The complex of maltol exists almost exclusively in the form cis-VO(ma)2(H2O) in aqueous solution at 298 K, while the trans species can be revealed only at higher temperatures, where the EPR linewidth significantly decreases. The equilibria involving 1-methylimidazole (MeIm), a model for the side chain His coordination, are also influenced by temperature, with its coordination being favored by decreasing the temperature. The implications of these results in the study of the (vanadium complex)-protein systems are discussed and the interaction with myoglobin (Mb) is examined as a representative example.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy.
| | - Giuseppe Lubinu
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy.
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
21
|
Grabowska O, Kogut MM, Żamojć K, Samsonov SA, Makowska J, Tesmar A, Chmur K, Wyrzykowski D, Chmurzyński L. Effect of Tetraphenylborate on Physicochemical Properties of Bovine Serum Albumin. Molecules 2021; 26:6565. [PMID: 34770974 PMCID: PMC8588492 DOI: 10.3390/molecules26216565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
The binding interactions of bovine serum albumin (BSA) with tetraphenylborate ions ([B(Ph)4]-) have been investigated by a set of experimental methods (isothermal titration calorimetry, steady-state fluorescence spectroscopy, differential scanning calorimetry and circular dichroism spectroscopy) and molecular dynamics-based computational approaches. Two sets of structurally distinctive binding sites in BSA were found under the experimental conditions (10 mM cacodylate buffer, pH 7, 298.15 K). The obtained results, supported by the competitive interactions experiments of SDS with [B(Ph)4]- for BSA, enabled us to find the potential binding sites in BSA. The first site is located in the subdomain I A of the protein and binds two [B(Ph)4]- ions (logK(ITC)1 = 7.09 ± 0.10; ΔG(ITC)1 = -9.67 ± 0.14 kcal mol-1; ΔH(ITC)1 = -3.14 ± 0.12 kcal mol-1; TΔS(ITC)1 = -6.53 kcal mol-1), whereas the second site is localized in the subdomain III A and binds five ions (logK(ITC)2 = 5.39 ± 0.06; ΔG(ITC)2 = -7.35 ± 0.09 kcal mol-1; ΔH(ITC)2 = 4.00 ± 0.14 kcal mol-1; TΔS(ITC)2 = 11.3 kcal mol-1). The formation of the {[B(Ph)4]-}-BSA complex results in an increase in the thermal stability of the alfa-helical content, correlating with the saturation of the particular BSA binding sites, thus hindering its thermal unfolding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (O.G.); (M.M.K.); (K.Ż.); (S.A.S.); (J.M.); (A.T.); (K.C.); (L.C.)
| | | |
Collapse
|
22
|
Abstract
Novel vitamin E chelate siderophore derivatives and their VV and FeIII complexes have been synthesised and the chemical and biological properties have been evaluated. In particular, the α- and δ-tocopherol derivatives with bis-methyldroxylamino triazine (α-tocTHMA) and (δ-tocDPA) as well their VV complexes, [V2VO3(α-tocTHMA)2] and [V2IVO3(δ-tocTHMA)2], have been synthesised and characterised by infrared (IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and ultra violet-visible (UV-Vis) spectroscopies. The dimeric vanadium complexes in solution are in equilibrium with their respefrctive monomers, H2O + [V2VO2(μ-O)]4+ = 2 [VVO(OH)]2+. The two amphiphilic vanadium complexes exhibit enhanced hydrolytic stability. EPR shows that the complexes in lipophilic matrix are mild radical initiators. Evaluation of their biological activity shows that the compounds do not exhibit any significant cytotoxicity to cells.
Collapse
|
23
|
Ternary Copper Complex of L-Glutamine and Phenanthroline as Counterions of Cyclo-Tetravanadate Anion: Experimental–Theoretical Characterization and Potential Antineoplastic Activity. METALS 2021. [DOI: 10.3390/met11101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, therapeutic metallodrugs have become substantially effective in the treatment of cancer. Thus, developing new effective anticancer drugs is a significant research area against the continuing increase in cancers worldwide. In the search for heterobimetallic prodrugs containing V/Cu, a new cyclo-tetravanadate was synthesized and characterized by UV-visible and FTIR spectroscopies and single-crystal X-ray diffraction. L-Glutamine and 1,10-phenanthroline allow the crystallization of [Cu(L-Gln)(phen)(H2O)]4[V4O12]∙8(H2O) (1), in which the cyclo-tetravanadate acts as a free anion. Density functional theory (DFT) calculations were carried out to characterize the frontier molecular orbitals and molecular electrostatic potential. Global reactivity indexes were calculated and analyzed to give insight into the cyclo-tetravanadate anion and complex counterions interactions. Also, using Bader’s theory of atoms in molecules (AIM), non-covalent interactions were analyzed. Docking analysis with the Casiopeina-like complex resulting from the hydrolysis of compound 1 provided insights into these complex potential anticancer activities by interacting with DNA/tRNA via H-bonds and hydrophobic interactions. The release of both components could act together or separately, acting as prodrugs with potential dual antineoplastic activities.
Collapse
|
24
|
Effects of co-administration of arsenic trioxide and Schiff base oxovanadium complex on the induction of apoptosis in acute promyelocytic leukemia cells. Biometals 2021; 34:1067-1080. [PMID: 34255251 DOI: 10.1007/s10534-021-00330-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Acute promyelocytic leukaemia (APL) is commonly treated with arsenic trioxide (As2O3) that has many side effects. Given the increasing trend of studies on beneficial therapeutic properties of synthetic compounds containing vanadium, the present study sought to use Schiff base oxovanadium complex to reduce the needed concentration of arsenic trioxide. The HL-60 cell line, which is a model of APL, was selected and the effects of arsenic trioxide and Schiff base oxovanadium complex were individually and simultaneously evaluated on the cell viability by the MTT assay. Flow cytometry and Real-time RT-PCR were also performed to investigate the rate of apoptosis and the expression of P53 and P21 genes, respectively. The IC50 of arsenic trioxide and Schiff base oxovanadium complex on Hl-60 cells was 8.37 ± 0.36 µM and 34.12 ± 1.52 µg/ml, respectively. At the simultaneous administration of both compounds, the maximum decrease in the cell viability was seen in co-administration of 40 µg/ml of Schiff base oxovanadium complex and 0.001 µM of arsenic trioxide. Real-time RT-PCR indicated that the co-administration of Schiff base oxovanadium complex 40 µg/ml and arsenic trioxide 0.001 µM could increase the expression of P53 and P21 genes by 3.76 ± 0.19 and 6.57 ± 1.29 fold change, respectively to the control sample. The flow cytometry studies also indicated that this co-administration could induce apoptosis up to 67% ± 0.9% significantly higher than the control sample. The use of Schiff base oxovanadium complex could significantly reduce the required dose of arsenic trioxide to induce apoptosis in HL-60 cells.
Collapse
|