1
|
Fu L, Wang CC, Tian W, Liu Z, Bao MY, Liu J, Zhang W, Bai LP, Jiang ZH, Zhu GY. NMR-Guided Isolation of Anti-inflammatory Carabranolides from the Fruits of Carpesium abrotanoides L. JOURNAL OF NATURAL PRODUCTS 2024; 87:1786-1797. [PMID: 38986603 PMCID: PMC11287756 DOI: 10.1021/acs.jnatprod.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Carabranolides present characteristic NMR resonances for the cyclopropane moiety, which distinctly differ from those of other compounds and were used for an NMR-guided isolation in this study. As a result, 11 undescribed carabranolides (1-11), along with five known ones (12-16), were isolated from the fruits of Carpesium abrotanoides L. Compounds 1-11 are new esters of carabrol at C-4 with different carboxylic acids. Their structures were elucidated by HRESIMS and NMR spectroscopic data analysis. The biological evaluation showed that compounds 2-4, 15, and 16 exhibited significant inhibitory activity against LPS-induced NO release with an IC50 value of 5.6-9.1 μM and dose-dependently decreased iNOS protein expression in RAW264.7 cells.
Collapse
Affiliation(s)
- Lu Fu
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| | - Can-Can Wang
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| | - Wenyue Tian
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| | - Zhiyan Liu
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| | - Meng-Yu Bao
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| | - Jiazheng Liu
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| | - Wei Zhang
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| | - Li-Ping Bai
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality
Research in Chinese Medicine, Macau Institute for Applied Research
in Medicine and Health, Macau University
of Science and Technology, Taipa, Macau SAR 999078, People’s Republic
of China
| |
Collapse
|
2
|
Perveen S, Hamedi A, Pasdaran A, Heidari R, Azam MSU, Tabassum S, Mehmood R, Peng J. Anti-inflammatory potential of some eudesmanolide and guaianolide sesquiterpenes. Inflammopharmacology 2024; 32:1489-1498. [PMID: 37962696 DOI: 10.1007/s10787-023-01375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Ten sesquiterpene lactones isolated from Anvillea garcinii (Burm.f.) DC ethanolic extract were assessed for their anti-inflammatory potential by myeloperoxidase (MPO) activity assignment, and mice paw swelling model. 3α,4α-10β-trihydroxy-8α-acetyloxyguaian-12,6α-olide (1), epi-vulgarin (3), 9a-hydroxyparthenolide (4), garcinamine C (7), garcinamine D (8), garcinamine E (9), and 4, 9-dihydroxyguaian-10(14)-en-12-olide (10) showed explicit anti-inflammatory activity in rodent paw edema and MPO assignment. The findings of this study showed that the α-methylene γ-lactone moiety does not always guarantee an anti-inflammatory effect, but the presence of proline at the C3 of the lactone ring improves the binding of sesquiterpene lactones with MPO isoenzymes, resulting in a more potent inhibition.
Collapse
Affiliation(s)
- Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA.
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Shafiq Ul Azam
- Department of Radiology, Yeovil district hospital Somerset foundation trust (NHS), BA21 4AT,, Yeovil, Somerset, UK
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Pakistan
| | - Rashad Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Jiangnan Peng
- Department of Chemistry, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA
| |
Collapse
|
3
|
Yan Y, Chen J, Peng M, Zhang X, Feng E, Li Q, Guo B, Ding X, Zhang Y, Tang L. Sesquiterpenes from Carpesium faberi triggered ROS-induced apoptosis and protective autophagy in hepatocellular carcinoma cells. PHYTOCHEMISTRY 2023; 214:113805. [PMID: 37527743 DOI: 10.1016/j.phytochem.2023.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Ten previously undescribed sesquiterpenes, carpespenes A-J (1-10), and eight known compounds (11-18), were isolated from the whole plants of Carpesium faberi. Their structures were established by extensive analysis of HRESIMS, NMR, and ECD spectra. Carpespene A (1) is eudesmanolide-type sesquiterpene lactone with an open five membered ring involving C-2 and C-3. Furthermore, compound 1 showed significant cytotoxic effects against four cancer cell lines with IC50 values from 8.20 to 18.45 μM, compared with the positive controls cisplatin and doxorubicin. Mechanistically, compound 1 induced apoptosis in the HepG2 cells by triggering excessive ROS accumulation. The latter however induced cytoprotective autophagy, which impaired the cytotoxicity of compound 1. Simultaneous antophagy inhibition with compound 1 treatment augmented the cytotoxic effects of the latter on HepG2 cells. Our findings further establish the structural diversity and bioactivity of sesquiterpenes, and provide an experimental basis for targeting cytoprotective autophagy as a potential chemotherapeutic strategy.
Collapse
Affiliation(s)
- Ying Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550014, China; School of Medicine and Health Management, Guizhou Medical University, Guiyang, 550025, China
| | - Jie Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550014, China
| | - Mingyou Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550014, China
| | - Xiong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550014, China
| | - Enming Feng
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550014, China
| | - Qindan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550014, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China.
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China.
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
4
|
Kovács T, Lajter I, Kúsz N, Schelz Z, Bózsity-Faragó N, Borbás A, Zupkó I, Krupitza G, Frisch R, Hohmann J, Vasas A, Mándi A. Isolation and NMR Scaling Factors for the Structure Determination of Lobatolide H, a Flexible Sesquiterpene from Neurolaena lobata. Int J Mol Sci 2023; 24:ijms24065841. [PMID: 36982924 PMCID: PMC10052924 DOI: 10.3390/ijms24065841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
A new flexible germacranolide (1, lobatolide H) was isolated from the aerial parts of Neurolaena lobata. The structure elucidation was performed by classical NMR experiments and DFT NMR calculations. Altogether, 80 theoretical level combinations with existing 13C NMR scaling factors were tested, and the best performing ones were applied on 1. 1H and 13C NMR scaling factors were also developed for two combinations utilizing known exomethylene containing derivatives, and the results were complemented by homonuclear coupling constant (JHH) and TDDFT-ECD calculations to elucidate the stereochemistry of 1. Lobatolide H possessed remarkable antiproliferative activity against human cervical tumor cell lines with different HPV status (SiHa and C33A), induced cell cycle disturbance and exhibited a substantial antimigratory effect in SiHa cells.
Collapse
Affiliation(s)
- Tibor Kovács
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ildikó Lajter
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Noémi Bózsity-Faragó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Richard Frisch
- Institute for Ethnobiology, Playa Diana, San José GT-170, Guatemala
| | - Judit Hohmann
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
- ELKH-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Andrea Vasas
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
- ELKH-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| |
Collapse
|
5
|
Tao R, Tang P, Gao J, Li J, Sun Y, Luo J, Li Y. The anti-inflammatory activity by suppressing the TRAF6/MAPKs pathway of trishizukaol a from Sarcandra glabra. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153952. [PMID: 35121389 DOI: 10.1016/j.phymed.2022.153952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sarcandra glabra (Thunb.) Makino (Chloranthaceae) is abundant and shows important clinical effects. Traditionally, S.glabra is used to treat diseases involving inflammation, such as bone fracture and joint swelling. Lindenane-type sesquiterpenoids and dimers are the major anti-inflammatory components in S. glabra. Trishizukaol A (TSA), is an abundant lindenane sesquiterpenoid trimer in S.glabra, but its anti-inflammatory activities and mechanisms are poorly understood. PURPOSE The study was undertaken to unveil the inhibition of inflammation and mechanism of TSA in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). METHODS Griess reagent and ELISA were utilized to measure nitric oxide (NO) production and inflammatory cytokines, respectively. Signal proteins such as JNK, nuclear factor E2-related factor 2 (Nrf2) and tumor necrosis factor receptor-associated factor 6 (TRAF6) were quantitatively evaluated in western blot experiments. Flow cytometry was used to determine the concentration of reactive oxygen species (ROS). More importantly, Drug Affinity Responsive Target Stability (DARTS) assay and molecular docking were conducted to investigate the potential targets of TSA. RESULTS TSA effectively reduced the NO production (half-maximal inhibitory concentration (IC50) at 12.53 ± 0.31 μM). In addition, TSA restrained the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and it could up-regulate the levels of interleukin-10 (IL-10). TSA also decreased ROS levels by enhancing the levels of Nrf2 protein and its related target genes. Meanwhile, TSA regulated the nuclear translocation of nuclear factor-κB (NF-κB) by suppressing the MAPKs signaling pathway. Importantly, TSA may suppress the inflammation through the TRAF6/MAPKs pathway. CONCLUSION TSA suppressed the inflammatory mechanism mediated by the TRAF6/MAPKs pathway. Our research first revealed the anti-inflammatory effect of a lindenane sesquiterpenoid trimer, providing a therapeutic drug candidate for inflammatory diseases. Furthermore, the lindenane-type sesquiterpenoid trimers may be among the main anti-inflammatory components in S. glabra.
Collapse
Affiliation(s)
- Rong Tao
- School of Food Science and Pharmaceutical Engineering, Testing & Analysis Center, Nanjing Normal University, Nanjing 210023, China
| | - Pengfei Tang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Juanjuan Gao
- School of Food Science and Pharmaceutical Engineering, Testing & Analysis Center, Nanjing Normal University, Nanjing 210023, China
| | - Jixin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yunpeng Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yi Li
- School of Food Science and Pharmaceutical Engineering, Testing & Analysis Center, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Ren YM, Zhang R, Feng Z, Ke CQ, Yao S, Tang C, Lin L, Ye Y. Macrocephatriolides A and B: Two Guaianolide Trimers from Ainsliaea macrocephala as PTP1B Inhibitors and Insulin Sensitizers. J Org Chem 2021; 86:17782-17789. [PMID: 34851120 DOI: 10.1021/acs.joc.1c01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macrocephatriolides A and B (1 and 2), two novel guaiane-type sesquiterpene lactone trimers possessing unique linkage patterns, were identified from the whole plant of Ainsliaea macrocephala. The trimeric architecture of 1 features a cyclohexene linkage and a methylene bridge, which were presumably constructed from three constitutive monomers via a Diels-Alder cycloaddition and a Michael addition, respectively. The three monomers of 2 were tethered by a 1,2-ethanediyl and a methylene linkage at the same time. Their complex structures were established by extensive analysis of spectroscopic data inclusive of band-selective CT-HSQC and CT-HMBC and time-dependent density functional theory (TDDFT) ECD calculations. Compound 2 showed potent inhibition against protein tyrosine phosphatase 1B (PTP1B) with an IC50 value of 26.26 ± 0.88 μM but not compound 1. In the kinetic study, compound 2 was disclosed as a competitive inhibitor of PTP1B with a Ki value of 16.34 ± 4.72 μM. In insulin-stimulated C2C12 myotubes, compound 2 dose-dependently enhanced glucose uptake by activating the insulin signaling pathway. Compound 2 might represent a new scaffold of insulin sensitizers.
Collapse
Affiliation(s)
- Yong-Mei Ren
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zheling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Chunping Tang
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, People's Republic of China
| |
Collapse
|
7
|
Wu JW, Tang CP, Yao S, Ke CQ, Ye Y. Three new carabrane sesquiterpenoid derivatives from the whole plant of Carpesium abrotanoides L. Chin J Nat Med 2021; 19:868-873. [PMID: 34844725 DOI: 10.1016/s1875-5364(21)60091-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 11/17/2022]
Abstract
Dicarabrols B and C (1 and 2), two new carabrane sesquiterpenoid dimers, along with one new carabrane sesquiterpenoid (3) were isolated from the whole plant of Carpesium abrotanoides L. Their full structures were established by extensive analysis of HR-ESI-MS and NMR spectroscopic data, and time-dependent density functional theory (TDDFT) electronic circular dichroism (ECD) calculations. Dicarabrol B possesses a novel C30 skeleton featuring a methylene-tethered bridge between two sesquiterpene moieties, while dicarabrol C presents the unique linkage of a cyclopentane ring in the molecule. Dicarabrol C exhibited potent inhibitory effects on HL-60 cells with an IC50 value of 3.7 μmol·L-1.
Collapse
Affiliation(s)
- Jie-Wei Wu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chun-Ping Tang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201203, China.
| |
Collapse
|
8
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2020. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1115-1134. [PMID: 34825847 DOI: 10.1080/10286020.2021.2004131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The new natural products reported in 2020 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2020 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Marcarino MO, Cicetti S, Zanardi MM, Sarotti AM. A critical review on the use of DP4+ in the structural elucidation of natural products: the good, the bad and the ugly. A practical guide. Nat Prod Rep 2021; 39:58-76. [PMID: 34212963 DOI: 10.1039/d1np00030f] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2015 up to the end of 2020Even in the golden age of NMR, the number of natural products being incorrectly assigned is becoming larger every day. The use of quantum NMR calculations coupled with sophisticated data analysis provides ideal complementary tools to facilitate the elucidation process in challenging cases. Among the current computational methodologies to perform this task, the DP4+ probability is a popular and widely used method. This updated version of Goodman's DP4 synergistically combines NMR calculations at higher levels of theory with the Bayesian analysis of both scaled and unscaled data. Since its publication in late 2015, the use of DP4+ to solve controversial natural products has substantially grown, with several predictions being confirmed by total synthesis. To date, the structures of more than 200 natural products were determined with the aid of DP4+. However, all that glitters is not gold. Besides its intrinsic limitations, on many occasions it has been improperly used with potentially important consequences on the quality of the assignment. Herein we present a critical revision on how the scientific community has been using DP4+, exploring the strengths of the method and how to obtain optimal results from it. We also analyze the weaknesses of DP4+, and the paths to by-pass them to maximize the confidence in the structural elucidation.
Collapse
Affiliation(s)
- Maribel O Marcarino
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Soledad Cicetti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - María M Zanardi
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
10
|
Su LH, Li TZ, Geng CA, Ma YB, Huang XY, Wang JP, Zhang XM, Chen JJ. Trimeric and dimeric sesquiterpenoids from Artemisia atrovirens and their cytotoxicities. Org Chem Front 2021. [DOI: 10.1039/d0qo01615b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Two sesquiterpenoid trimers and two sesquiterpenoid dimers possessing unprecedented scaffolds with a methylene-bridged connection were identified from Artemisia atrovirens. Compound 3 showed obvious cytotoxicity against HepG2 and Huh7 cell lines.
Collapse
Affiliation(s)
- Li-Hua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Jin-Ping Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| |
Collapse
|
11
|
Wang Q, Zhang T, Ke CQ, Tang C, Yao S, Lin L, Ye Y. Sesquiterpene lactone dimers from Artemisia lavandulifolia inhibit interleukin-1β production in macrophages through activating autophagy. Bioorg Chem 2020; 105:104451. [PMID: 33197851 DOI: 10.1016/j.bioorg.2020.104451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 01/02/2023]
Abstract
Twelve new sesquiterpene lactone dimers, lavandiolides A-L (1-12), were isolated from the whole plants of Artemisia lavandulifolia. Among them, compounds 1-6 are 1,3-linked Diels-Alder adducts between two guaianolide monomers, and 7-12 are 2,4-linked sesquiterpene lactone dimers. Their structures were elucidated by comprehensive analysis of HRESIMS, 1D and 2D NMR spectra. Their absolute configurations were determined by ECD spectra and single-crystal X-ray diffraction analyses with Cu Kα radiation. The nitric oxide (NO) inhibitory effect of all the isolates was assessed on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Compounds 1, 3, 7 and 9 showed potent inhibitory effects on NO production, with IC50 values of 0.61 ± 0.15, 1.64 ± 0.04, 1.89 ± 0.16, and 1.40 ± 0.23 μM, respectively. Furthermore, compound 1 inhibited NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome-mediated interleukin-1β (IL-1β) production through activating autophagy.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China.
| | - Yang Ye
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|